AI Article Synopsis

Article Abstract

Purpose Of Review: Transmembrane 6 superfamily member 2 ( TM6SF2 ) gene was identified through exome-wide studies in 2014. A genetic variant from glutamic acid to lysine substitution at amino acid position 167 (NM_001001524.3:c.499G> A) (p.Gln167Lys/p.E167K, rs58542926) was discovered (p.E167K) to be highly associated with increased hepatic fat content and reduced levels of plasma triglycerides and LDL cholesterol. In this review, we focus on the discovery of TM6SF2 and its role in VLDL secretion pathways. Human data suggest TM6SF2 is linked to hepatic steatosis and cardiovascular disease (CVD), hence understanding its metabolic pathways is of high scientific interest.

Recent Findings: Since its discovery, completed research studies in cell, rodent and human models have defined the role of TM6SF2 and its links to human disease. TM6SF2 resides in the endoplasmic reticulum (ER) and the ER-Golgi interface and helps with the lipidation of nascent VLDL, the main carrier of triglycerides from the liver to the periphery. Consistent results from cells and rodents indicated that the secretion of triglycerides is reduced in carriers of the p.E167K variant or when hepatic TM6SF2 is deleted. However, data for secretion of APOB, the main protein of VLDL particles responsible for triglycerides transport, are inconsistent.

Summary: The identification of genetic variants that are highly associated with human disease presentation should be followed by the validation and investigation into the pathways that regulate disease mechanisms. In this review, we highlight the role of TM6SF2 and its role in processing of liver triglycerides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168781PMC
http://dx.doi.org/10.1097/MOL.0000000000000930DOI Listing

Publication Analysis

Top Keywords

role tm6sf2
12
tm6sf2
8
highly associated
8
tm6sf2 role
8
human disease
8
role
5
triglycerides
5
basic translational
4
translational evidence
4
evidence supporting
4

Similar Publications

Intestinal TM6SF2 protects against metabolic dysfunction-associated steatohepatitis through the gut-liver axis.

Nat Metab

January 2025

Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.

Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host-microbe interactions in MASH development remains unclear.

View Article and Find Full Text PDF

Hepatic TM6SF2 activates antitumour immunity to suppress metabolic dysfunction-associated steatotic liver disease-related hepatocellular carcinoma and boosts immunotherapy.

Gut

December 2024

Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China

Background: Transmembrane 6 superfamily member 2 (TM6SF2) has a protective role against metabolic dysfunction-associated steatotic liver disease (MASLD).

Objective: We aim to investigate the mechanistic role and therapeutic potential of hepatic TM6SF2 in MASLD-related hepatocellular carcinoma (HCC).

Design: Hepatocyte-specific knockout ( ) mice were fed with high-fat/high-cholesterol (HFHC) diet or diethylnitrosamine plus HFHC diet to induce MASLD-HCC.

View Article and Find Full Text PDF

Team players in the pathogenesis of metabolic dysfunctions-associated steatotic liver disease: The basis of development of pharmacotherapy.

World J Gastrointest Pathophysiol

August 2024

Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85712, United States.

Nutrient metabolism is regulated by several factors. Social determinants of health with or without genetics are the primary regulator of metabolism, and an unhealthy lifestyle affects all modulators and mediators, leading to the adaptation and finally to the exhaustion of cellular functions. Hepatic steatosis is defined by presence of fat in more than 5% of hepatocytes.

View Article and Find Full Text PDF

G-quadruplex forming regions in GCK and TM6SF2 are targets for differential DNA methylation in metabolic disease and hepatocellular carcinoma patients.

Sci Rep

August 2024

Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria.

The alarming increase in global rates of metabolic diseases (MetDs) and their association with cancer risk renders them a considerable burden on our society. The interplay of environmental and genetic factors in causing MetDs may be reflected in DNA methylation patterns, particularly at non-canonical (non-B) DNA structures, such as G-quadruplexes (G4s) or R-loops. To gain insight into the mechanisms of MetD progression, we focused on DNA methylation and functional analyses on intragenic regions of two MetD risk genes, the glucokinase (GCK) exon 7 and the transmembrane 6 superfamily 2 (TM6SF2) intron 2-exon 3 boundary, which harbor non-B DNA motifs for G4s and R-loops.

View Article and Find Full Text PDF

Metabolic and bariatric surgery (MBS) effectively treats obesity and related comorbidities, though individual responses vary. This systematic review examines how genetic variants influence MBS outcomes in morbidly obese patients. A comprehensive search in PubMed, Embase, Medline, and the Cochrane Library identified 1572 studies, with 52 meeting the inclusion criteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!