A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Protective effect of bark extract on bone mineral density and bone remodelling in estrogen deficient ovariectomized Sprague-Dawley (SD) rats. | LitMetric

Unlabelled: Osteoporosis is a common metabolic old age disorder characterised by low bone mass content (BMC) and mineral density (BMD) with micro-architectural deterioration of the extracellular matrix, further increasing bone fragility risk. Several traditional remedies, including plant extracts and herbal formulations, are used worldwide by local healers to improve the overall bone health and metabolism as an excellent osteoregenerative agent.  is an underexplored medicinal plant used by tribal peoples of Western Ghats, India, to treat bone fractures and associated inflammation. The proposed study evaluates the elemental profiling and phytochemical characterisation of  methanolic bark extract (PRME), along with detailed In vitro and In vivo biological investigation in MG-63 cells and Sprague-Dawley (SD) rats. AAS and ICP-MS analysis showed the presence of calcium, phosphorus, and magnesium and exceptional levels of strontium, chromium, and zinc in PRME. The NMR characterisation revealed the presence of vanillic acid, Ergost-4-ene-3-one and catechin. The molecular docking studies revealed the target pockets of isolated compounds and various marker proteins in the bone remodelling cycle. In vitro studies showed a significant hike in ALP and calcium content, along with upregulated mRNA expression of the ALP and COL1, which confirmed the osteoinductive activity of PRME in human osteoblast-like MG-63 cells. The in vivo evaluation in ovariectomised (OVX) rats showed remarkable recovery in ALP, collagen and osteocalcin protein after 3 months of PRME treatment. DEXA scanning reports in OVX rats supported the above in vitro and in vivo results, significantly enhancing the BMD and BMC. The results suggest that PRME can induce osteogenic activity and enhance bone formation with an excellent osteoprotective effect against bone loss in OVX animals due to estrogen deficiency.

Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03942-7.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917708PMC
http://dx.doi.org/10.1007/s13205-024-03942-7DOI Listing

Publication Analysis

Top Keywords

bone
9
bark extract
8
mineral density
8
bone remodelling
8
mg-63 cells
8
ovx rats
8
prme
5
protective bark
4
extract bone
4
bone mineral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!