Background: Studies have identified individual blood biomarkers associated with chronic obstructive pulmonary disease (COPD) and related phenotypes. However, complex diseases such as COPD typically involve changes in multiple molecules with interconnections that may not be captured when considering single molecular features.
Methods: Leveraging proteomic data from 3,173 COPDGene Non-Hispanic White (NHW) and African American (AA) participants, we applied sparse multiple canonical correlation network analysis (SmCCNet) to 4,776 proteins assayed on the SomaScan v4.0 platform to derive sparse networks of proteins associated with current vs. former smoking status, airflow obstruction, and emphysema quantitated from high-resolution computed tomography scans. We then used NetSHy, a dimension reduction technique leveraging network topology, to produce summary scores of each proteomic network, referred to as NetSHy scores. We next performed genome-wide association study (GWAS) to identify variants associated with the NetSHy scores, or network quantitative trait loci (nQTLs). Finally, we evaluated the replicability of the networks in an independent cohort, SPIROMICS.
Results: We identified networks of 13 to 104 proteins for each phenotype and exposure in NHW and AA, and the derived NetSHy scores significantly associated with the variable of interests. Networks included known (sRAGE, ALPP, MIP1) and novel molecules (CA10, CPB1, HIS3, PXDN) and interactions involved in COPD pathogenesis. We observed 7 nQTL loci associated with NetSHy scores, 4 of which remained after conditional analysis. Networks for smoking status and emphysema, but not airflow obstruction, demonstrated a high degree of replicability across race groups and cohorts.
Conclusions: In this work, we apply state-of-the-art molecular network generation and summarization approaches to proteomic data from COPDGene participants to uncover protein networks associated with COPD phenotypes. We further identify genetic associations with networks. This work discovers protein networks containing known and novel proteins and protein interactions associated with clinically relevant COPD phenotypes across race groups and cohorts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925350 | PMC |
http://dx.doi.org/10.1101/2024.02.26.24303069 | DOI Listing |
BMC Genomics
September 2024
Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA.
medRxiv
February 2024
Department of Biostatistics and Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO.
Background: Studies have identified individual blood biomarkers associated with chronic obstructive pulmonary disease (COPD) and related phenotypes. However, complex diseases such as COPD typically involve changes in multiple molecules with interconnections that may not be captured when considering single molecular features.
Methods: Leveraging proteomic data from 3,173 COPDGene Non-Hispanic White (NHW) and African American (AA) participants, we applied sparse multiple canonical correlation network analysis (SmCCNet) to 4,776 proteins assayed on the SomaScan v4.
Bioinformatics
January 2023
Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
Motivation: Biological networks can provide a system-level understanding of underlying processes. In many contexts, networks have a high degree of modularity, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!