A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Auditory Feature-based Perceptual Distance. | LitMetric

Auditory Feature-based Perceptual Distance.

bioRxiv

Department of Psychology, University of California, San Diego, La Jolla, CA 92093.

Published: March 2024

Studies comparing acoustic signals often rely on pixel-wise differences between spectrograms, as in for example mean squared error (MSE). Pixel-wise errors are not representative of perceptual sensitivity, however, and such measures can be highly sensitive to small local signal changes that may be imperceptible. In computer vision, high-level visual features extracted with convolutional neural networks (CNN) can be used to calculate the fidelity of computer-generated images. Here, we propose the auditory perceptual distance (APD) metric based on acoustic features extracted with an unsupervised CNN and validated by perceptual behavior. Using complex vocal signals from songbirds, we trained a Siamese CNN on a self-supervised task using spectrograms rescaled to match the auditory frequency sensitivity of European starlings, Sturnus vulgaris. We define APD for any pair of sounds as the cosine distance between corresponding feature vectors extracted by the trained CNN. We show that APD is more robust to temporal and spectral translation than MSE, and captures the sigmoidal shape of typical behavioral psychometric functions over complex acoustic spaces. When fine-tuned using starlings' behavioral judgments of naturalistic song syllables, the APD model yields even more accurate predictions of perceptual sensitivity, discrimination, and categorization on novel complex (high-dimensional) acoustic dimensions, including diverging decisions for identical stimuli following different training conditions. Thus, the APD model outperforms MSE in robustness and perceptual accuracy, and offers tunability to match experience-dependent perceptual biases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925319PMC
http://dx.doi.org/10.1101/2024.02.28.582631DOI Listing

Publication Analysis

Top Keywords

perceptual distance
8
perceptual sensitivity
8
features extracted
8
apd model
8
perceptual
7
apd
5
auditory feature-based
4
feature-based perceptual
4
distance studies
4
studies comparing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!