Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ability to accurately predict protein-protein interactions is critically important for our understanding of major cellular processes. However, current experimental and computational approaches for identifying them are technically very challenging and still have limited success. We propose a new computational method for predicting protein-protein interactions using only primary sequence information. It utilizes a concept of physical-chemical similarity to determine which interactions will most probably occur. In our approach, the physical-chemical features of protein are extracted using bioinformatics tools for different organisms, and then they are utilized in a machine-learning method to identify successful protein-protein interactions via correlation analysis. It is found that the most important property that correlates most with the protein-protein interactions for all studied organisms is dipeptide amino acid compositions. The analysis is specifically applied to the bacterial two-component system that includes histidine kinase and transcriptional response regulators. Our theoretical approach provides a simple and robust method for quantifying the important details of complex mechanisms of biological processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925282 | PMC |
http://dx.doi.org/10.1101/2024.02.27.582345 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!