The persistence of HIV-1 in long-lived latent reservoirs during suppressive antiretroviral therapy (ART) remains one of the principal barriers to a functional cure. Blocks to transcriptional elongation play a central role in maintaining the latent state, and several latency reversal strategies focus on the release of positive transcription elongation factor b (P-TEFb) from sequestration by negative regulatory complexes, such as the 7SK complex and BRD4. Another major cellular reservoir of P-TEFb is in Super Elongation Complexes (SECs), which play broad regulatory roles in host gene expression. Still, it is unknown if the release of P-TEFb from SECs is a viable latency reversal strategy. Here, we demonstrate that the SEC is not required for HIV-1 replication in primary CD4+ T cells and that a small molecular inhibitor of the P-TEFb/SEC interaction (termed KL-2) increases viral transcription. KL-2 acts synergistically with other latency reversing agents (LRAs) to reactivate viral transcription in several cell line models of latency in a manner that is, at least in part, dependent on the viral Tat protein. Finally, we demonstrate that KL-2 enhances viral reactivation in peripheral blood mononuclear cells (PBMCs) from people living with HIV on suppressive ART, most notably in combination with inhibitor of apoptosis protein antagonists (IAPi). Taken together, these results suggest that the release of P-TEFb from cellular SECs may be a novel route for HIV-1 latency reactivation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925308PMC
http://dx.doi.org/10.1101/2024.03.01.582881DOI Listing

Publication Analysis

Top Keywords

release p-tefb
12
latency reversal
12
p-tefb super
8
super elongation
8
hiv-1 latency
8
viral transcription
8
latency
6
release
4
elongation
4
elongation complex
4

Similar Publications

Drug abuse continues to pose a significant challenge in HIV control efforts. In our investigation, we discovered that cocaine not only upregulates the expression of the DNA-dependent protein kinase (DNA-PK) but also augments DNA-PK activation by enhancing its phosphorylation at S2056. Moreover, DNA-PK phosphorylation triggers the higher localization of the DNA-PK into the nucleus.

View Article and Find Full Text PDF

Phosphorylation by JNK switches BRD4 functions.

Mol Cell

November 2024

Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA. Electronic address:

Bromodomain 4 (BRD4), a key regulator with pleiotropic functions, plays crucial roles in cancers and cellular stress responses. It exhibits dual functionality: chromatin-bound BRD4 regulates remodeling through its histone acetyltransferase (HAT) activity, while promoter-associated BRD4 regulates transcription through its kinase activity. Notably, chromatin-bound BRD4 lacks kinase activity, and RNA polymerase II (RNA Pol II)-bound BRD4 exhibits no HAT activity.

View Article and Find Full Text PDF
Article Synopsis
  • Hexim proteins regulate RNA by targeting 7SK long non-coding RNA, which is crucial for controlling mRNA transcription in eukaryotic cells.
  • 7SK RNPs manage the levels of the kinase P-TEFb by keeping it inactive, thus affecting the transition of RNA polymerase II from pausing to elongation during transcription.
  • The study reveals how Hexim1 interacts with 7SK RNA to expose P-TEFb binding sites, shedding light on the regulation mechanism and the specificity of Hexim for RNA.
View Article and Find Full Text PDF
Article Synopsis
  • - Alzheimer's disease is characterized by impaired memory formation, which relies on the ability of neurons to rapidly transcribe genes, a process influenced by the state of RNA polymerase II (RNAP2).
  • - When neurons are stimulated, RNAP2 is released from a paused state, allowing it to produce messenger RNA (mRNA), with this release regulated by a complex involving positive transcription elongation factor b (P-TEFb) and HEXIM1.
  • - The study shows that the regulation of P-TEFb by HEXIM1 plays a crucial role in the transcription of genes in neurons, especially in response to stimulation, highlighting its importance for memory-related functions and synaptic plasticity in the context of Alzheimer's disease. *
View Article and Find Full Text PDF

Release of P-TEFb from the Super Elongation Complex promotes HIV-1 latency reversal.

PLoS Pathog

September 2024

Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America.

The persistence of HIV-1 in long-lived latent reservoirs during suppressive antiretroviral therapy (ART) remains one of the principal barriers to a functional cure. Blocks to transcriptional elongation play a central role in maintaining the latent state, and several latency reversal strategies focus on the release of positive transcription elongation factor b (P-TEFb) from sequestration by negative regulatory complexes, such as the 7SK complex and BRD4. Another major cellular reservoir of P-TEFb is in Super Elongation Complexes (SECs), which play broad regulatory roles in host gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!