In natural behavior, observers must separate relevant information from a barrage of irrelevant information. Many studies have investigated the neural underpinnings of this ability using artificial stimuli presented on simple backgrounds. Natural viewing, however, carries a set of challenges that are inaccessible using artificial stimuli, including neural responses to background objects that are task-irrelevant. An emerging body of evidence suggests that the visual abilities of humans and animals can be modeled through the linear decoding of task-relevant information from visual cortex. This idea suggests the hypothesis that irrelevant features of a natural scene should impair performance on a visual task only if their neural representations intrude on the linear readout of the task relevant feature, as would occur if the representations of task-relevant and irrelevant features are not orthogonal in the underlying neural population. We tested this hypothesis using human psychophysics and monkey neurophysiology, in response to parametrically variable naturalistic stimuli. We demonstrate that 1) the neural representation of one feature (the position of a central object) in visual area V4 is orthogonal to those of several background features, 2) the ability of human observers to precisely judge object position was largely unaffected by task-irrelevant variation in those background features, and 3) many features of the object and the background are orthogonally represented by V4 neural responses. Our observations are consistent with the hypothesis that orthogonal neural representations can support stable perception of objects and features despite the tremendous richness of natural visual scenes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925131 | PMC |
http://dx.doi.org/10.1101/2024.02.14.580134 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!