The lymphatic system consists of a vessel network lined by specialized lymphatic endothelial cells (LECs) that are responsible for tissue fluid homeostasis and immune cell trafficking. The mechanisms for organ-specific LEC responses to environmental cues are not well understood. We found robust lymphangiogenesis during influenza A virus infection in the adult mouse lung. We show that the number of LECs increases 2-fold at 7 days post-influenza infection (dpi) and 3-fold at 21 dpi, and that lymphangiogenesis is preceded by lymphatic dilation. We also show that the expanded lymphatic network enhances fluid drainage to mediastinal lymph nodes. Using EdU labeling, we found that a significantly higher number of pulmonary LECs are proliferating at 7 dpi compared to LECs in homeostatic conditions. Lineage tracing during influenza indicates that new pulmonary LECs are derived from preexisting LECs rather than non-LEC progenitors. Lastly, using a conditional LEC-specific YAP/TAZ knockout model, we established that lymphangiogenesis, fluid transport and the immune response to influenza are independent of YAP/TAZ activity in LECs. These findings were unexpected, as they indicate that YAP/TAZ signaling is not crucial for these processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925403 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-3951689/v1 | DOI Listing |
The Rac1 P29S hotspot mutation in cutaneous melanoma is associated with resistance to MAPK pathway inhibitors (MAPKi) and worse clinical outcomes. Moreover, activation of Rac1 guanine exchange factors (GEFs) also promotes MAPKi-resistance, particularly in undifferentiated melanoma cells. Here we delineate mechanisms of Rac1-driven MAPKi-resistance and identify strategies to inhibit the growth of this class of cutaneous melanomas.
View Article and Find Full Text PDFMol Cell Biochem
December 2024
Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
Colorectal cancer (CRC) ranks third for morbidity and second for mortality among all digestive malignant tumors worldwide, but its pathogenesis remains not entirely clear. Bioinformatic analyses were performed to find out important biomarkers for CRC. For validation, reverse transcription-quantitative PCR, western blotting, and immunohistochemistry were performed.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired and lung function declines.
View Article and Find Full Text PDFMol Cancer Ther
December 2024
Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan.
Inactivation of the Hippo tumor suppressive pathway is frequently observed in mesothelioma, which leads to the activation of YAP and TAZ (YAP/TAZ) transcriptional coactivators. YAP/TAZ form complexes with TEAD family members, DNA-binding proteins, to activate transcription, which promotes cancer cell growth and proliferation. Recently developed TEAD inhibitors exhibit antitumor activity by inhibiting the formation of the transcription complex through binding to TEAD; however, the antitumor activity of TEAD inhibitors against mesothelioma remains to be fully elucidated.
View Article and Find Full Text PDFActa Biomater
December 2024
Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Mechanical Engineering, Washington University, St. Louis, MO 63130, USA; Cytex Therapeutics, Inc., Durham, NC 27704, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!