DEV is an obligatory lytic phage of the N4-like genus, recently reclassified as . The DEV genome encodes 91 ORFs, including a 3,398 amino acid virion-associated RNA polymerase. Here, we describe the complete architecture of DEV, determined using a combination of cryo-electron microscopy localized reconstruction, biochemical methods, and genetic knockouts. We built de structures of all capsid factors and tail components involved in host attachment. We demonstrate that DEV long tail fibers are essential for infection of and dispensable for infecting mutants with a truncated lipopolysaccharide devoid of the O-antigen. We identified DEV ejection proteins and, unexpectedly, found that the giant DEV RNA polymerase, the hallmark of the family, is an ejection protein. We propose that DEV ejection proteins form a genome ejection motor across the host cell envelope and that these structural principles are conserved in all .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925440PMC
http://dx.doi.org/10.21203/rs.3.rs-3941185/v1DOI Listing

Publication Analysis

Top Keywords

dev
8
genome ejection
8
ejection motor
8
rna polymerase
8
dev ejection
8
ejection proteins
8
ejection
5
integrative structural
4
structural analysis
4
analysis phage
4

Similar Publications

In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.

View Article and Find Full Text PDF

Mucopolysaccharidosis type I (MPS I) is a metabolic disorder characterized by a deficiency in α-l-iduronidase (IDUA), leading to impaired glycosaminoglycan degradation. Current approved treatments seek to restore IDUA levels via enzyme replacement therapy (ERT) and/or hematopoietic stem cell transplantation (HSCT). The effectiveness of these treatment strategies in preventing neurodegeneration is limited due to the inability of ERT to penetrate the blood-brain barrier (BBB) and HSCT's limited CNS reconstitution of IDUA levels.

View Article and Find Full Text PDF

Ferroptosis, distinct from apoptosis, is primarily characterized by the accumulation of iron-dependent lipid peroxides (LPO) and reactive oxygen species (ROS). This process plays a pivotal role in the pathophysiology of various diseases and has recently emerged as a promising therapeutic strategy in oncology, garnering significant attention. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), serve as crucial regulators in numerous biological processes, particularly in cancer initiation and progression.

View Article and Find Full Text PDF

Zebrafish as a model system for studying reproductive diseases.

Front Cell Dev Biol

December 2024

Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Organs Development and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China.

Reproductive system diseases have become a major health challenge facing humans, so extensive investigations are needed to understand their complex pathogenesis and summarize effective treatments. In the study of reproductive diseases, mice are the most commonly used animal model. However, the cost and time required to establish mouse animal models are high.

View Article and Find Full Text PDF

PLK1 inhibition impairs erythroid differentiation.

Front Cell Dev Biol

December 2024

School of Life Sciences, Zhengzhou University, Zhengzhou, China.

Polo-like kinase 1 (PLK1), a key regulator of the G2/M phase in mitosis, is frequently overexpressed in numerous tumors. Although PLK1 inhibitors have emerged as promising therapeutic agents for cancer, their use has been linked to significant anemia in a subset of patients, yet the underlying mechanisms remain poorly understood. In this study, we utilized an human umbilical cord blood-derived CD34 cell-based erythroid differentiation system, alongside a murine model, to investigate the impact of PLK1 inhibitors on erythropoiesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!