Following the recent pandemic of COVID-19, scientists have made many efforts to devise a workable solution for it, worldwide. However, it was shown that the protective effect of a well-conditioning system is as high as five times in comparison to the face-covering and other proposed procedures. In this context, the age of air and the type of filtration systems in closed spaces became the critical criteria for comparing the capability of ventilation systems. In this paper, a validated numerical model for the perforated duct diffusers is used to study the behaviour of the local age of air at the full-scale office with 8 feet (2.44 [m]) height, under various initial conditions like initial velocity and air change per hour. Also, different geometries for the ducts have been investigated under the same initial condition, as well as the effect of direction, ventilation effectiveness, and flow pattern. Finally, the volume average of the age of air at different zones has been nominated to perform the sensitivity analysis of each variable based on the variation of the airflow. The results show that diffusers with vertical perforations would be more effective during the pandemic than the other types in airborne mitigation. Moreover, the highest available airflow shall be set until such time there is no windy area in the breathing zone. Within these modifications, the residence time of the infectious nuclei in the breathing zone may decrease by up to 30%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10923659 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e26667 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!