Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper reports a facile fabrication method of hydroxyapatite/chitosan (HAp/CS) composite scaffold with 3D porous structure without using any chemical cross-linkers. The HAp particles had an urchin-like hollow microstructure and high surface area, which was uniformly dispersed into the pore walls of the HAp/CS scaffold. The addition of HAp can efficiently enhance the mechanical properties and bioactivity of the HAp/CS scaffold. Moreover, periostin was successfully loaded onto the HAp/CS scaffold. When applied to the repair of bone defect in a rat mandibular model, the HAp/CS scaffold loaded with periostin can enhance osteointegration and accelerate bone regeneration. Our research combines periostin with the HAp/CS composite material, which provides a novel strategy to improve bone regeneration and has great application prospect in bone repair fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920147 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e25832 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!