Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920286 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1364487 | DOI Listing |
JMIR Mhealth Uhealth
January 2025
Calydial, Vienne, France.
Background: The use of telemonitoring to manage renal function in patients with chronic kidney disease (CKD) is recommended by health authorities. However, despite these recommendations, the adoption of telemonitoring by both health care professionals and patients faces numerous challenges.
Objective: This study aims to identify barriers and facilitators in the implementation of a telemonitoring program for patients with CKD, as perceived by health care professionals and patients, and to explore factors associated with the adoption of the program.
Purpose: The light adjustable lens (LAL) (RxSight, Aliso Viejo, CA) is a premium intraocular lens that allows for correction of residual refractive error and astigmatism following implantation. Herein, we describe the surgical approach and evaluate the visual outcomes of patients following scleral fixation of the LAL.
Methods: Retrospective, single-surgeon surgical case series of 3 patients (3 eyes) with intraocular lens complications, who underwent combined pars plana vitrectomy and sutureless needle assisted intrascleral haptic fixation of the LAL between April 2022, to August 2023.
ACS Appl Mater Interfaces
January 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
Flexible electronics have been rapidly advancing and have garnered significant interest in monitoring physiological activities and health conditions. However, flexible electronics are prone to detachment in humid environments, so developing human-friendly flexible electronic devices that can effectively monitor human movement under various aquatic conditions and function as flexible electrodes remains a significant challenge. Here, we report a strongly adherent, self-healing, and swelling-resistant conductive hydrogel formed by combining the dual synergistic effects of hydrogen bonding and dipole-dipole interactions.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
Atomically precise nanoclusters (NCs) are promising building blocks for designing materials and interfaces with unique properties. By incorporating heteroatoms into the core, the electronic and magnetic properties of NCs can be precisely tuned. To accurately predict these properties, density functional theory (DFT) is often employed, making the rigorous benchmarking of DFT results particularly important.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have received significant interest for use in tunnel field-effect transistors (TFETs) due to their ultrathin layers and tunable band gap features. In this study, we used density functional theory (DFT) to investigate the electronic properties of six TMD heterostructures, namely, MoSe/HfS, MoTe/ZrS, MoTe/HfS, WSe/HfS, WTe/ZrS, and WTe/HfS, focusing on variations in band alignments. We demonstrate that WTe/ZrS and WTe/HfS have the smallest band gaps (close to 0 or broken) from the considered set.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!