Nickel-titanium (NiTi) instruments have become the backbone of endodontics due to their exceptional properties, superelasticity, and shape memory. However, challenges such as unexpected breakage, poor cutting efficiency, and corrosion have prompted researchers to explore innovative surface modifications to enhance their performance. This comprehensive review discusses the latest advancements in NiTi metallurgy and their impact on rotary NiTi file systems. Various surface treatment techniques, including ion implantation, cryogenic treatment (CT), thermal nitridation, electropolishing, and physical or chemical vapor deposition, have been investigated to minimize defects, boost surface hardness, and improve cyclic fatigue resistance. Ion implantation has shown promise by increasing wear resistance and cutting efficiency through nitrogen ion incorporation. Thermal nitridation has successfully formed titanium nitride (TiN) coatings, resulting in improved corrosion resistance and cutting efficiency. CT has demonstrated increased cutting efficiency and overall strength by creating a martensite transformation and finer carbide particles. Electropolishing has yielded mixed results, providing smoother surfaces but varying impacts on fatigue resistance. Physical or chemical vapor deposition has proven effective in forming TiN coatings, enhancing hardness and wear resistance. Furthermore, the concept of surface functionalization with silver ions for antibacterial properties has been explored. These advancements present an exciting future for endodontic procedures, offering the potential for enhanced NiTi instruments with improved performance, durability, and patient outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10923218 | PMC |
http://dx.doi.org/10.4103/JCDE.JCDE_248_23 | DOI Listing |
Alzheimers Dement
December 2024
University of Pittsburgh, Pittsburgh, PA, USA.
Background: Employing a custom 60-channel single-transmit/32-channel receive Tic-Tac-Toe (TTT) coil in 7T MRI imaging has enhanced the resolution and contrast for identifying White Matter Hyperintensities (WMHs), which are critical markers in Alzheimer's disease and related dementias (AD/ADRD).
Method: The method involves resecting the left hemisphere of the brain, excluding the cerebellum, followed by embalming in 10% formalin. 1.
Microsc Res Tech
January 2025
Artificial Intelligence and Data Analytics (AIDA) lab, CCIS Prince Sultan University, Riyadh, Saudi Arabia.
Microscopic imaging aids disease diagnosis by describing quantitative cell morphology and tissue size. However, the high spatial resolution of these images poses significant challenges for manual quantitative evaluation. This project proposes using computer-aided analysis methods to address these challenges, enabling rapid and precise clinical diagnosis, course analysis, and prognostic prediction.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, USA.
The integration of drug molecular representations into predictive models for Drug Response Prediction (DRP) is a standard procedure in pharmaceutical research and development. However, the comparative effectiveness of combining these representations with genetic profiles for DRP remains unclear. This study conducts a comprehensive evaluation of the efficacy of various drug molecular representations employing cutting-edge machine learning models under various experimental settings.
View Article and Find Full Text PDFMusic genres classification poses a formidable challenge as it necessitates capturing the intricate and varied characteristics of musical signals. In this study, an innovative approach is presented to classify the music genres using the Capsule Neural Network (CapsNet). The CapsNet model optimized by an advanced version of Triangulation Topology Aggregation Optimizer (ATTAO).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, CHINA.
Ultra-narrowband and highly modifiable multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are crucial for realizing high-performance wide-color-gamut display applications. Despite progress, most MR-TADF emitters remain confined to blue and green wavelengths, with difficulties extending into longer wavelengths without significant spectral broadening, which compromises color purity in full-color organic light-emitting diode (OLED) displays. In this work, we present a novel tetraazacyclophane-based architecture embedding dual boron atoms to remarkedly enhance intramolecular charge transfer through the strategic positioning of boron and nitrogen atoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!