Mass spectrometry is a crucial technology in numerous applications, but it places stringent requirements on the detector to achieve high resolution across a broad spectrum of ion masses. Low-dimensional nanostructures offer opportunities to tailor properties and achieve performance not reachable in bulk materials. Here, an array of sharp zinc oxide wires was directly grown on a 30 nm thin, free-standing silicon nitride nanomembrane to enhance its field emission (FE). The nanomembrane was subsequently used as a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry detector. When ionized biomolecules impinge on the backside of the surface-modified nanomembrane, the current-emitted from the wires on the membrane's front side-is amplified by the supplied thermal energy, which allows for the detection of the ions. An extensive simulation framework was developed based on a combination of lateral heat diffusion in the nanomembrane, heat diffusion along the wires, and FE, including Schottky barrier lowering, to investigate the impact of wire length and diameter on the FE. Our theoretical model suggests a significant improvement in the overall FE response of the nanomembrane by growing wires on top. Specifically, long thin wires are ideal to enhance the magnitude of the FE signal and to shorten its duration for the fastest response simultaneously, which could facilitate the future application of detectors in mass spectrometry with properties improved by low-dimensional nanostructures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918783PMC
http://dx.doi.org/10.1021/acsomega.3c08932DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
16
field emission
8
zinc oxide
8
oxide wires
8
time-of-flight mass
8
low-dimensional nanostructures
8
heat diffusion
8
wires
6
nanomembrane
6
thermally driven
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!