The mitochondria are responsible for the production of cellular ATP, the regulation of cytosolic calcium levels, and the organization of numerous apoptotic proteins through the release of cofactors necessary for the activation of caspases. This level of functional adaptability can only be attained by sophisticated structural alignment. The morphology of the mitochondria does not remain unchanged throughout time; rather, it undergoes change as a result of processes known as fusion and fission. Fzo in flies, Fzo1 in yeast, and mitofusins in mammals are responsible for managing the outer mitochondrial membrane fusion process, whereas Mgm1 in yeast and optic atrophy 1 in mammals are responsible for managing the inner mitochondrial membrane fusion process. The fusion process is composed of two phases. MFN1, a GTPase that is located on the outer membrane of the mitochondria, is involved in the process of linking nearby mitochondria, maintaining the potential of the mitochondrial membrane, and apoptosis. This article offers specific information regarding the functions of MFN1 in a variety of cells and organs found in living creatures. According to the findings of the literature review, MFN1 plays an important part in a number of diseases and organ systems; nevertheless, the protein's function in other disease models and cell types has to be investigated in the near future so that it can be chosen as a promising marker for the therapeutic and diagnostic potentials it possesses. Overall, the major findings of this review highlight the pivotal role of mitofusin (MFN1) in regulating mitochondrial dynamics and its implications across various diseases, including neurodegenerative disorders, cardiovascular diseases, and metabolic syndromes. Our review identifies novel therapeutic targets within the MFN1 signaling pathways and underscores the potential of MFN1 modulation as a promising strategy for treating mitochondrial-related diseases. Additionally, the review calls for further research into MFN1's molecular mechanisms to unlock new avenues for clinical interventions, emphasizing the need for targeted therapies that address MFN1 dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924208 | PMC |
http://dx.doi.org/10.1016/j.jsps.2024.102012 | DOI Listing |
ACS Nano
January 2025
Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
Nonantibiotic strategies are urgently needed to treat acute drug-resistant bacterial pneumonia. Recently, nanomaterial-mediated bacterial cuproptosis has arisen widespread interest due to its superiority against antibiotic resistance. However, it may also cause indiscriminate and irreversible damage to healthy cells.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France.
Today, weed control in agricultural systems is largely based on the use of synthetic pesticides. However, the use of these compounds is increasingly controversial among farmers and consumers, who point to their harmful properties for human health and the environment. In this context, the development of eco-friendly agricultural approaches and practices is becoming essential, and allelopathy represents a promising solution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Life Sciences, Henan University, Kaifeng, Henan 475001, China.
Melanoma, a highly aggressive skin cancer, poses significant challenges due to its rapid metastases and high mortality rates. While metformin (Met), a first-line medication for type 2 diabetes, has shown promise in inhibiting tumor growth and metastases, its clinical efficacy in cancer therapy is limited by low bioavailability, short half-life, and gastrointestinal adverse reactions associated with oral administration. In this study, we developed a hollow mesoporous polydopamine nanocomposite (HMPDA-PEG@Met@AB) coloaded with Met and ammonia borane (AB), designed to enable a combined gas-assisted, photothermal, and chemotherapeutic approach for melanoma treatment.
View Article and Find Full Text PDFPotassium channels regulate membrane potential, calcium flux, cellular activation and effector functions of adaptive and innate immune cells. The voltage-activated Kv1.3 channel is an important regulator of T cell-mediated autoimmunity and microglia-mediated neuroinflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!