Radon exposure is the second leading cause of lung cancer, yet few Americans test their homes for radon, particularly in rural areas. The academic team and community partners engaged the public library systems in four rural counties to offer digital radon detectors for check-out as a means of increasing the public's access to free radon testing. The check-out procedures and instructional materials were created through an iterative process, and library personnel were educated on radon and home radon testing prior to launching the lending program. Library patrons reported high usability, feasibility, and acceptability of the program. Library patron-staff interactions mainly included discussions about the logistics of radon testing. Given that public libraries are invested in making communities thrive and promoting health, providing library lending programs for radon detectors is a novel, feasible, and acceptable way to reduce the risk of lung cancer in the community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919551PMC
http://dx.doi.org/10.1016/j.lisr.2024.101283DOI Listing

Publication Analysis

Top Keywords

radon testing
16
radon
9
public library
8
library lending
8
lending programs
8
lung cancer
8
radon detectors
8
program library
8
library
5
programs increase
4

Similar Publications

Radon Exposure and Gestational Diabetes.

JAMA Netw Open

January 2025

Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.

Importance: Understanding environmental risk factors for gestational diabetes (GD) is crucial for developing preventive strategies and improving pregnancy outcomes.

Objective: To examine the association of county-level radon exposure with GD risk in pregnant individuals.

Design, Setting, And Participants: This multicenter, population-based cohort study used data from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) cohort, which recruited nulliparous pregnant participants from 8 US clinical centers between October 2010 and September 2013.

View Article and Find Full Text PDF

Identifying Predictors of Spatiotemporal Variations in Residential Radon Concentrations across North Carolina Using Machine Learning Analytics.

Environ Pollut

January 2025

Department of Population Health Sciences, Duke University, Durham, NC 27708, United States; Duke Cancer Institute, Duke University, Durham, NC 27708, United States.

Radon is a naturally occurring radioactive gas derived from the decay of uranium in the Earth's crust. Radon exposure is the leading cause of lung cancer among non-smokers in the US. Radon infiltrates homes through soil and building foundations.

View Article and Find Full Text PDF

Background: Radon, a colorless and odorless radioactive gas, poses serious health risks. It is the second leading cause of lung cancer and notably increases lung cancer risk in smokers. Although previous epidemiological studies have mainly examined lung cancer rates in miners, the effects of radon on genomic stability and its molecular mechanisms are not well understood.

View Article and Find Full Text PDF

Design of a Low-cost Radiation Weather Station.

Health Phys

January 2025

Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109-2104.

Combining a traditional weather station with radiation monitors draws the public's attention to the magnitude of background radiation and its typical variation while providing early indications of unplanned radiological releases, such as nuclear power plant accidents or terrorist acts. Several networks of combined weather and radiation monitoring sensors exist, but these fail to be affordable for broad distribution. This work involves creating an affordable system to accumulate data from multiple locations into a single open-source database.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate prediction of spin-state energetics for transition metal complexes is crucial for understanding catalytic mechanisms and discovering new materials, but existing methods are often unreliable due to their strong dependency on the computational approach.
  • A new benchmark set of spin-state energetics was created from experimental data of 17 transition metal complexes (Fe, Co, Mn, Ni), which helps establish reference values for comparing computational methods like DFT and coupled-cluster theories.
  • The study found that the coupled-cluster CCSD(T) method is the most accurate, outperforming multireference methods, while certain double-hybrid DFT methods also showed promising results compared to commonly recommended DFT approaches that performed significantly worse.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!