Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: As a potential natural active substance, natural biologically active peptides (NBAPs) are recently attracting increasing attention. The traditional proteolysis methods of obtaining effective NBAPs are considerably vexing, especially since multiple proteases can be used, which blocks the exploration of available NBAPs. Although the development of virtual digesting brings some degree of convenience, the activity of the obtained peptides remains unclear, which would still not allow efficient access to the NBAPs. It is necessary to develop an efficient and accurate strategy for acquiring NBAPs.
Results: A new in silico scheme named SSA-LSTM-VD, which combines a sparrow search algorithm-long short-term memory (SSA-LSTM) deep learning and virtually digested, was presented to optimize the proteolysis acquisition of NBAPs. Therein, SSA-LSTM reached the highest Efficiency value reached 98.00 % compared to traditional machine learning algorithms, and basic LSTM algorithm. SSA-LSTM was trained to predict the activity of peptides in the proteins virtually digested results, obtain the percentage of target active peptide, and select the appropriate protease for the actual experiment. As an application, SSA-LSTM was employed to predict the percentage of neuroprotective peptides in the virtual digested result of walnut protein, and trypsin was ultimately found to possess the highest value (85.29 %). The walnut protein was digested by trypsin (WPTrH) and the peptide sequence obtained was analyzed closely matches the theoretical neuroprotective peptide. More importantly, the neuroprotective effects of WPTrH had been demonstrated in nerve damage mouse models.
Significance: The proposed SSA-LSTM-VD in this paper makes the acquisition of NBAPs efficient and accurate. The approach combines deep learning and virtually digested skillfully. Utilizing the SSA-LSTM-VD based strategy holds promise for discovering and developing peptides with neuroprotective properties or other desired biological activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2024.342419 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!