A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

'Nunchuck' proteins: Short flexible linkers resist proteolysis by facilitating motions in flanking domains to inhibit the approach of proteases. | LitMetric

'Nunchuck' proteins: Short flexible linkers resist proteolysis by facilitating motions in flanking domains to inhibit the approach of proteases.

Biochem Biophys Res Commun

Centre for Protein Science, Design and Engineering (CPSDE) and Hyperthermophile Enzyme Hydrolase Research Centre (HEHRC), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab, 140306, India. Electronic address:

Published: April 2024

Peptides linking well-folded and non-interacting domains in fusion proteins can undergo proteolytic degradation. This leads to physical separation of the domains that were originally sought to be joined. In order to identify characteristics that determine linker degradation propensity, we selected a pair of thermostable, proteolytically-resistant domains, and joined them using five different linkers. We then assessed linker degradation propensities through size-exclusion chromatography, and denaturing and non-denaturing electrophoresis. The domains used were Coh2, an all-beta cohesin from C. thermocellum CipA, and BSX, a beta/alpha barrel xylanase from Bacillus sp. NG-27, while the linkers used were Rigid (3 repeats of N-EAAAK-C), Flexible (two repeats of N-SGGGG-C), Nat-full (42 residues of a Coh2-adjacent linker from CipA), Nat-half (a 21 residues-long derivative of Nat-full) and Nat-quarter (a 9 residues-long derivative of Nat-full). Both with proteolysis effected by proteases present in the environment, and with an exogenously-added protease (Subtilisin A), we found that Flexible underwent little or no degradation, whereas linkers of comparable length like Nat-quarter or Rigid underwent extensive degradation, as did longer linkers like Nat-Half and Nat-Full. Our analyses disfavor the likelihood of the sequence of Flexible being naturally resistant to proteolysis, and instead favor the explanation that the flexibility of Flexible facilitates movements of Coh2 relative to BSX which then serve to sterically prevent the approach of proteases. Thus, the construct incorporating Flexible appears to behave like a 'nunchuck' in which rods/spheres flanking a chain collide with approaching swords that are capable of severing the chain, to prevent severance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.149730DOI Listing

Publication Analysis

Top Keywords

approach proteases
8
linker degradation
8
residues-long derivative
8
derivative nat-full
8
flexible
6
linkers
5
domains
5
degradation
5
'nunchuck' proteins
4
proteins short
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!