Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Reactive astrocytes are hallmarks of traumatic spinal cord injury (T-SCI) and are associated with neuropathic pain (NP). Mediating the functional phenotype of reactive astrocytes helps neural repair and ameliorates NP in T-SCI. Here, we aimed to explore the role of tetramethylpyrazine (TMPZ) and astragaloside IV (AGS-IV) in astrocyte polarization and the underlying molecular mechanism in T-SCI.
Methods: Primary cultured astrocytes from mice were treated with LPS or conditioned medium from "M1" polarized microglia (M1-CM), followed by TMPZ and/or AGS-IV administration. The expression levels of "A1" astrocyte-specific markers (including C3, GBP2, Serping1, iNOS), "A2" astrocyte-specific markers (including S100a10 and PTX3), Sirt1 and NF-κB were detected via western blotting. TNF-α and IL-1β levels were detected via ELISA. RT-PCR was used to evaluate OIP5-AS1 and miR-34a expression. si-OIP5-AS1 or the Sirt1 inhibitor EX-527 was administered to astrocytes. A spinal cord injury (SCI) model was constructed in Sprague-Dawley (SD) rats. Alterations in astrocytic "A1/A2" polarization in the spinal cord tissues were evaluated.
Results: LPS and M1-CM induced "A1" polarization of primary astrocytes. TMPZ and ASG IV could substantially reduce the expression of "A1"-related biomarkers but enhance "A2"-related biomarkers. OIP5-AS1 and Sirt1 levels were reduced in "A1"-polarized astrocytes, while miR-34a and p-NF-κB p65 were elevated. TMPZ and ASG IV enhanced OIP5-AS1 and Sirt1 levels and, in contrast, attenuated the changes in miR-34a and p-NF-κB p65 levels. Notably, the TMPZ and ASG IV combination had stronger effects on astrocyte polarization than the single treatment with TMPZ or ASG IV. OIP5-AS1 knockdown and Sirt1 inhibition both reversed the regulatory effects of TMPZ and ASG IV in astrocytic polarization. According to the in vivo experiments, the expression of "A1"-associated markers was enhanced in the spinal cords of SCI rats. The TMPZ and ASG IV combination reduced astrocytic "A1" polarization and enhanced astrocytic "A2" polarization. The expression of lncRNA OIP5-AS1 and Sirt1 was enhanced by TMPZ and ASG IV, while that of miR-34a and p-NF-κB p65 was inhibited.
Conclusion: The combination of TMPZ and ASG IV can ameliorate dysregulated astrocytic polarization induced by spinal cord injury by affecting the lncRNA OIP5-AS1-Sirt1-NF-κB pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2024.111686 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!