Background: Dementia is characterized by a cognitive decline in memory and other domains that lead to functional impairments. As people age, subjective memory complaints (SMC) become common, where individuals perceive cognitive decline without objective deficits on assessments. SMC can be an early sign and may precede amnestic mild cognitive impairment (MCI), which frequently advances to Alzheimer's disease (AD).

Objective: This study aims to investigate white matter microstructure in individuals with SMC, in cognitively impaired (CI) cohorts, and in cognitively normal individuals using diffusion kurtosis imaging (DKI) and free water imaging (FWI). The study also explores voxel-based correlations between DKI/FWI metrics and cognitive scores to understand the relationship between brain microstructure and cognitive function.

Methods: Twelve healthy controls (HCs), ten individuals with SMC, and eleven CI individuals (MCI or AD) were enrolled in this study. All participants underwent MRI 3T scan and the BNI Screen (BNIS) for Higher Cerebral Functions.

Results: The mean kurtosis tensor and anisotropy of the kurtosis tensor showed significant differences across the three groups, indicating altered white matter microstructure in CI and SMC individuals. The free water volume fraction (f) also revealed group differences, suggesting changes in extracellular water content. Notably, these metrics effectively discriminated between the CI and HC/SMC groups. Additionally, correlations between imaging metrics and BNIS scores were found for CI and SMC groups.

Conclusions: These imaging metrics hold promise in discriminating between individuals with CI and SMC. The observed differences indicate their potential as sensitive and specific biomarkers for early detection and differentiation of cognitive decline.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-230952DOI Listing

Publication Analysis

Top Keywords

white matter
12
matter microstructure
12
cognitive decline
12
individuals smc
12
subjective memory
8
memory complaints
8
cognitive impairment
8
diffusion kurtosis
8
kurtosis imaging
8
free water
8

Similar Publications

Objective: The aim of this study was to explore the microstructural dynamics of the subventricular zone (SVZ) with aging and their associations with clinical disability and brain structural damage in pediatric-onset multiple sclerosis (MS) patients.

Methods: One-hundred and forty-one pediatric-onset MS patients (67 pediatric and 74 adults with pediatric-onset) and 233 healthy controls (HC) underwent neurological and 3.0 T MRI assessment.

View Article and Find Full Text PDF

Purpose: This study proposes a novel, contrast-free Magnetic Resonance Fingerprinting (MRF) method using balanced Steady-State Free Precession (bSSFP) sequences for the quantification of cerebral blood volume (CBV), vessel radius (R), and relaxometry parameters (T , T , T *) in the brain.

Methods: The technique leverages the sensitivity of bSSFP sequences to intra-voxel frequency distributions in both transient and steady-state regimes. A dictionary-matching process is employed, using simulations of realistic mouse microvascular networks to generate the MRF dictionary.

View Article and Find Full Text PDF

Correction: The two sides of Phobos: Gray and white matter abnormalities in phobic individuals.

Cogn Affect Behav Neurosci

January 2025

Departamento de Psicología ClínicaPsicobiología y MetodologíaFacultad de Psicología, Universidad de La Laguna, 38200, La Laguna, Tenerife, Spain.

View Article and Find Full Text PDF

Ultra-high-resolution brain MRI at 0.55T: bSTAR and its application to magnetization transfer ratio imaging.

Z Med Phys

January 2025

Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland.

Purpose: This study aims to evaluate the feasibility of structural sub-millimeter isotropic brain MRI at 0.55 T using a 3D half-radial dual-echo balanced steady-state free precession sequence, termed bSTAR and to assess its potential for high-resolution magnetization transfer imaging.

Methods: Phantom and in-vivo imaging of three healthy volunteers was performed on a low-field 0.

View Article and Find Full Text PDF

Single cell approaches define neural stem cell niches and identify microglial ligands that can enhance precursor-mediated oligodendrogenesis.

Cell Rep

January 2025

Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:

Here, we used single cell RNA sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We defined the dorsal and lateral ventricular-subventricular zones (V-SVZs) as two distinct neighborhoods and showed that, after white matter injury, NSCs are activated to make oligodendrocytes dorsally for remyelination. This activation is coincident with an increase in transcriptionally distinct microglia in the dorsal V-SVZ niche.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!