Bistriazolotriazole-tetramine: commendable energetic moiety and cation.

J Mol Model

Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India.

Published: March 2024

Context: Various 7H,7'H-[6,6'-bi[1,2,4]triazolo[4,3-b][1,2,4]triazole]-3,3',7,7'-tetramine (A) based nitrogen-rich energetic salts were designed and their properties explored. All energetic salts possess relatively high nitrogen content (> 48%), positive heats of formation (> 429 kJ/mol) and stability owing to a significant contribution from fused backbone. The cationic component shows a very high heat of formation (2516 kJ/mol); therefore, it is highly suitable for enthalpy enhancement in new energetic salts. The cation was paired with the energetic anions nitrate (NO), perchlorate (ClO), dinitromethanide (CH(NO)), trinitromethanide (C(NO)), nitroamide (NHNO), and dinitroamide (N(NO)) to improve oxygen balance and detonation performance. Designed salts show moderate detonation velocities (7.9-8.7 km/s) and pressures (23.8 - 33.1 GPa). The distribution of frontier molecular orbitals, molecular electrostatic surface potentials, QTAIM topological properties, and noncovalent interactions of designed salts were simulated to understand the electronic structures, charge distribution in molecules, hydrogen bonding, and other nonbond interactions. The predicted safety factor (SF) and impact sensitivity (H) of designed salts suggest their insensitivity to mechanical stimuli. This work explored the 7H,7'H-[6,6'-bi[1,2,4]triazolo[4,3-b][1,2,4]triazole]-3,3',7,7'-tetramine as a suitable cationic component which could be promising and serve exemplarily in energetic materials.

Methods: The optimization and energy calculations of all the designed compounds were carried out at the B3LYP/6-311 +  + G(d,p) and M06-2X/def2-TZVPP levels, utilizing the Gaussian software package. The molecular surface electrostatic potential, quantum theory of atoms in molecules (QTAIM), reduced density gradient (RDG), and noncovalent interaction (NCI) analysis were performed by employing Multiwfn software. The EXPLO5 (v 7.01) thermochemical code and PILEM web application were used to predict the detonation properties.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-024-05892-6DOI Listing

Publication Analysis

Top Keywords

energetic salts
12
designed salts
12
cationic component
8
energetic
6
salts
6
designed
5
bistriazolotriazole-tetramine commendable
4
commendable energetic
4
energetic moiety
4
moiety cation
4

Similar Publications

Dissolution, solvation and diffusion in low-temperature zinc electrolyte design.

Nat Rev Chem

January 2025

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China.

Aqueous zinc-based batteries have garnered the attention of the electrochemical energy storage community, but they suffer from electrolytes freezing and sluggish kinetics in cold environments. In this Review, we discuss the key parameters necessary for designing anti-freezing aqueous zinc electrolytes. We start with the fundamentals related to different zinc salts and their dissolution and solvation behaviours, by highlighting the effects of anions and additives on salt solubility, ion diffusion and freezing points.

View Article and Find Full Text PDF

Prediction of the Specific Energy of Supercapacitors with Polymeric Materials Using Advanced Molecular Dynamics Simulations.

Polymers (Basel)

December 2024

Department of Communications, Faculty of Electronics, Telecommunications and Information Technologies, "Politehnica" University of Timisoara, V. Pârvan Blvd., No. 2, 300223 Timisoara, Romania.

Supercapacitor/pseudocapacitor structures with electrodes and electrolytes based on conductive polymers, but not only, have been analyzed using techniques. Results indicated in the literature were used to confirm the results obtained for the specific capacitance and energetic performances of the systems. New material classes like Polymer-MXene electrodes ((PANI)/TiC, PFDs/TiCT) present increased capacitance in comparison with simple polymeric composites (PETC or PTh).

View Article and Find Full Text PDF

Metal-containing compounds form a large and rapidly expanding group of high-energy materials. Many compounds in this class attract the attention of non-professionals, who may attempt the illegal production of explosives. Several of these substances have been commercially available and pose significant danger if used by terrorists or for criminal purposes.

View Article and Find Full Text PDF

In this study, the electrochemical coupling of nitrosoarenes with ammonium dinitramide is discovered, leading to the facile construction of the nitro--azoxy group, which represents an important motif in the design of energetic materials. Compared to known approaches to nitro--azoxy compounds involving two chemical steps (formation of azoxy group containing a leaving group and its nitration) and demanding expensive, corrosive, and hygroscopic nitronium salts, the presented electrochemical method consists of a single step and is based solely on nitrosoarenes and ammonium dinitramide. The dinitramide salt plays the roles of both the electrolyte and reactant for the coupling.

View Article and Find Full Text PDF

The functionalization of pyrazole-based compounds with dinitromethyl and -hydroxytetrazole groups resulted in enhanced energetic properties. Two key compounds, 5-(dinitromethyl)-3,4-dinitro-1-pyrazole () and 5-(3,4-dinitro-1-pyrazol-5-yl)-1-tetrazol-1-ol (), along with their salts, were synthesized and evaluated for their energetic properties. Notably, the bishydroxylammonium salts (: 8778 m·s; : 33.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!