High resolution spatiotemporal modeling of long term anthropogenic nutrient discharge in China.

Sci Data

State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.

Published: March 2024

High-resolution integration of large-scale and long-term anthropogenic nutrient discharge data is crucial for understanding the spatiotemporal evolution of pollution and identifying intervention points for pollution mitigation. Here, we establish the MEANS-ST1.0 dataset, which has a high spatiotemporal resolution and encompasses anthropogenic nutrient discharge data collected in China from 1980 to 2020. The dataset includes five components, namely, urban residential, rural residential, industrial, crop farming, and livestock farming, with a spatial resolution of 1 km and a temporal resolution of monthly. The data are available in three formats, namely, GeoTIFF, NetCDF and Excel, catering to GIS users, researchers and policymakers in various application scenarios, such as visualization and modelling. Additionally, rigorous quality control was performed on the dataset, and its reliability was confirmed through cross-scale validation and literature comparisons at the national and regional levels. These data offer valuable insights for further modelling the interactions between humans and the environment and the construction of a digital Earth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925032PMC
http://dx.doi.org/10.1038/s41597-024-03102-9DOI Listing

Publication Analysis

Top Keywords

anthropogenic nutrient
12
nutrient discharge
12
discharge data
8
high resolution
4
resolution spatiotemporal
4
spatiotemporal modeling
4
modeling long
4
long term
4
term anthropogenic
4
discharge china
4

Similar Publications

In recent decades, global change and local anthropogenic pressures have severely affected natural ecosystems and their biodiversity. Although disentangling the effects of these factors is difficult, they are reflected in changes in the functional composition of plant communities. We present a comprehensive, large-scale analysis of long-term changes in plant communities of various non-forest habitat types in the Czech Republic based on 1154 vegetation-plot time series from 53 resurvey studies comprising 3909 vegetation-plot records.

View Article and Find Full Text PDF

Introduction: The northwest Arabian Gulf encounters significant anthropogenic pressures, including nutrient enrichment from coastal development and effluent discharge.

Methods: This study presents the first shotgun metagenomics-based characterization of microbial communities in Kuwaiti waters of the northwest Arabian Gulf, focusing on Kuwait's first Marine Protected Area (MPA) in Sulaibikhat Bay, a vital nursery ground for commercially important fish.

Results: Analysis revealed significantly higher microbial diversity within the MPA compared to adjacent waters, with Rhodobacteraceae (27.

View Article and Find Full Text PDF

Microbial communities, which are crucial for ecosystem function and sustainability, are under environmental pressure. Using phospholipid fatty acids (PLFAs) as a measure of microbial biomass and community structure, the responses of microorganisms to environmental drivers were studied in bank soil and sediment alongside the Yangtze River in China. Thirty-eight sites were investigated over a length of 5500 kilometers, ranging from the plateau to the estuary.

View Article and Find Full Text PDF

Influences of fluctuating nutrient loadings on nitrate-reducing microorganisms in rivers.

ISME Commun

January 2025

Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.

Rivers serve important functions for human society and are significantly impacted by anthropogenic nutrient inputs (e.g. organic and sulfur compounds).

View Article and Find Full Text PDF

Paleolimnological evidence of anthropogenic influence and environmental changes in a tropical high mountain lake (Lake Tota, Colombia).

Sci Total Environ

January 2025

Laboratorio de Limnología, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Pontificia Universidad Javeriana, Bogotá, Colombia.

In this study, we focused on Lake Tota (Colombia) as a model for investigating the impact of anthropogenic activities on lake productivity. Two sediment cores collected from the two main basins of the lake (Lago Grande and Lago Chico) were dated using alpha spectrometry for Pb. Changes in organic matter, carbon and nitrogen isotope ratios, C:N ratios, diatoms and elemental fractions were examined as indicators of productivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!