These facts argue against the gain-of-function synucleinopathy hypothesis, which proposes that Lewy pathology causes Parkinson's disease: (1) most brains from people without neurological symptoms have multiple pathologies; (2) neither pathology type nor distribution correlate with disease severity or progression in Parkinson's disease; (3) aggregated α-synuclein in the form of Lewy bodies is not a space-occupying lesion but the insoluble fraction of its precursor, soluble monomeric α-synuclein; (4) pathology spread is passive, occurring by irreversible nucleation, not active replication; and (5) low cerebrospinal fluid α-synuclein levels predict brain atrophy and clinical disease progression. The transformation of α-synuclein into Lewy pathology may occur as a response to biological, toxic, or infectious stressors whose persistence perpetuates the nucleation process, depleting normal α-synuclein and eventually leading to Parkinson's symptoms from neuronal death. We propose testing the loss-of-function synucleinopenia hypothesis by evaluating the clinical and neurodegenerative rescue effect of replenishing the levels of monomeric α-synuclein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.parkreldis.2024.106077 | DOI Listing |
Mol Neurobiol
January 2025
Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
This study utilises amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) human brain samples from the GEO database and employs differential expression gene (DEG) analysis to identify genes that are pivotal in both neurodegenerative diseases. Through in depth GO and KEGG enrichment analyses, we elucidated the biological functions and potential pathways associated with these DEGs. Furthermore, by constructing protein‒protein interaction networks, we highlight the significance of shared DEGs in both cellular physiology and disease contexts.
View Article and Find Full Text PDFCells
December 2024
Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia.
Neurological disorders (NDs), such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and schizophrenia, represent a complex and multifaceted health challenge that affects millions of people around the world. Growing evidence suggests that disrupted neuronal calcium signalling contributes to the pathophysiology of NDs. Additionally, calcium functions as a ubiquitous second messenger involved in diverse cellular processes, from synaptic activity to intercellular communication, making it a potential therapeutic target.
View Article and Find Full Text PDFHealthcare (Basel)
January 2025
Department of Public Health, College of Health Sciences, Arcadia University, 241 Easton Hall, 450 S. Easton Rd., Glenside, PA 19038, USA.
A public health priority is the increasing number of persons with Parkinson's disease (PwP), and the need to provide them with support. We sought to synthesize the experiences of relatives or friends-family caregivers-who provide such support. This study was a scoping literature review modeled by the PRISMA guidelines.
View Article and Find Full Text PDFHealthcare (Basel)
January 2025
Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Ave., 2nd Floor, Boston, MA 02215, USA.
Social isolation and health-related consequences of the COVID-19 pandemic may have significantly impacted quality of life in people with Parkinson's disease (PwPD). The effect of the COVID-19 pandemic specifically on subjective cognition and social functioning in PwPD is poorly understood. We conducted a longitudinal analysis of changes in subjective cognitive and social functioning in PwPD before (T1, 2017-2019) and during (T2, 2021) the COVID-19 pandemic.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Stockholm, Sweden.
Background: We sought to characterize the cognitive profile among individuals with mild cognitive impairment with Lewy bodies (MCI-LB) to help guide future clinical criteria.
Methods: Systematic review and meta-analysis included MCI-LB studies with cognitive data from PubMed, Embase, Web of Science, and PsycINFO (January 1990 to March 2023). MCI-LB scores were compared to controls, MCI due to Alzheimer's disease (MCI-AD), and dementia with Lewy bodies (DLB) groups with random-effects models.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!