Extracellular ATP activates P2 purinergic receptors. Whether purinergic signaling is functionally coupled to cellular senescence is largely unknown. We find that oxidative stress induced release of ATP and caused senescence in human lung fibroblasts. Inhibition of P2 receptors limited oxidative stress-induced senescence, while stimulation with exogenous ATP promoted premature senescence. Pharmacological inhibition of P2Y11 receptor (P2Y11R) inhibited premature senescence induced by either oxidative stress or ATP, while stimulation with a P2Y11R agonist was sufficient to induce cellular senescence. Our data show that both extracellular ATP and a P2Y11R agonist induced calcium (Ca) release from the endoplasmic reticulum (ER) and that either inhibition of phospholipase C or intracellular Ca chelation impaired ATP-induced senescence. We also find that Ca that was released from the ER, following ATP-mediated activation of phospholipase C, entered mitochondria in a manner dependent on P2Y11R activation. Once in mitochondria, excessive Ca promoted the production of reactive oxygen species in a P2Y11R-dependent fashion, which drove development of premature senescence of lung fibroblasts. Finally, we show that conditioned medium derived from senescent lung fibroblasts, which were induced to senesce through the activation of ATP/P2Y11R-mediated signaling, promoted the proliferation of triple-negative breast cancer cells and their tumorigenic potential by secreting amphiregulin. Our study identifies the existence of a novel purinergic signaling pathway that links extracellular ATP to the development of a protumorigenic premature senescent phenotype in lung fibroblasts that is dependent on P2Y11R activation and ER-to-mitochondria calcium signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11002311 | PMC |
http://dx.doi.org/10.1016/j.jbc.2024.107145 | DOI Listing |
Cell Biochem Biophys
January 2025
Department of Maxillofacial Radiology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan.
Synephrine, a protoalkaloid found in Citrus aurantium (CA) peels, exerts lipolytic, anti-inflammatory, and vasoconstrictive effects; however, its antioxidant activity remains unclear. In this study, electron spin resonance spectroscopy revealed that synephrine scavenged both hydroxyl and superoxide anion radicals. Several external stimuli, such as HO, X-rays, and ultraviolet (UV) radiation, cause stress-induced premature senescence (SIPS).
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.
Aging is the most common risk factor for Multiple Sclerosis (MS) disease progression. Cellular senescence, the irreversible state of cell cycle arrest, is the main driver of aging and has been found to accumulate prematurely in neurodegenerative diseases, including Alzheimer's and Parkinson's disease. Cellular senescence in the central nervous system of MS patients has recently gained attention, with several studies providing evidence that demyelination induces cellular senescence, with common hallmarks of p16INK4A and p21 expression, oxidative stress, and senescence-associated secreted factors.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China.
Background: Yin-deficiency constitution (YinDC) refers to a traditional Chinese medicine concept, characterized by an imbalance state that includes an imbalance in the gut microbiota, resulting from a relative deficiency of Yin fluids within the body. In recent years, it has become apparent that the composition and structure of the gut microbiota play a significant role in the aging process. The imbalance of gut microbiota in YinDC may accelerate the aging process.
View Article and Find Full Text PDFJ Control Release
January 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China. Electronic address:
Existing treatments for androgenetic alopecia (AGA) are unsatisfactory, owing to the two major reasons: (1) Oxidative stress and vascularization deficiency in the perifollicular environment provoke the premature senescence of hair follicles, limiting transformation from the telogen to the anagen phase; (2) The amount of drug delivered to the perifollicular region located in the deep dermis is very limited for passive drug delivery systems. Herein, we developed a gas-propelledmicroneedle patch integrated with ferrum-chelated puerarin/quercetin nanoparticles (PQFN) to increase drug accumulation in hair follicles and reshape the perifollicular environment for improved hair-regenerating effects. PQFN can rejuvenate testosterone (Tes)-induced senescence of dermal papilla cells by scavenging ROS, restoring mitochondrial function, regulating signaling pathways related to hair regeneration, and upregulating hair growth-promoting genes.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
Cells regulate gene expression through various RNA regulatory mechanisms, and this regulation often becomes less efficient with age, contributing to accelerated aging and various age-related diseases. Nonsense-mediated mRNA decay (NMD), a well-characterized RNA surveillance mechanism, degrades aberrant mRNAs with premature termination codons (PTCs) to prevent the synthesis of truncated proteins. While the role of NMD in cancer and developmental and genetic diseases is well documented, its implications in human aging remain largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!