A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Actinomycetota, a central constituent microbe during long-term exposure to diazinon, an organophosphorus insecticide. | LitMetric

Actinomycetota, a central constituent microbe during long-term exposure to diazinon, an organophosphorus insecticide.

Chemosphere

Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA), Wanju, 55365, Republic of Korea. Electronic address:

Published: April 2024

Microbial biodegradation is a primary pesticide remediation pathway. Despite diazinon is one of the most frequently used organophosphate insecticides worldwide, its effect on soil microbial community remains obscure. We hypothesize that diazinon exposure reshapes microbial community, among them increased microbes may play a crucial role in diazinon degradation. To investigate this, we collected soil from an organic farming environment, introduced diazinon, cultivated it in a greenhouse, and then assessed its effects on soil microbiomes at three distinct time points: 20, 40, and 270 days after treatment (DAT). Results from HPLC showed that the level of diazinon was gradually degraded by 98.8% at 270 DAT when compared with day zero, whereas 16S rRNA gene analysis exhibited a significant reduction in the bacterial diversity, especially at the early two time points, indicating that diazinon may exert selection pressure to the bacteria community. Here, the relative abundance of phylum Actinomycetota increased at 20 and 40 DATs. In addition, the bacterial functional gene profile employing PICRUSt2 prediction also revealed that diazinon exposure induced the genomic function related to xenobiotics biodegradation and metabolism in soil, such as CYB5B, hpaC, acrR, and ppkA. To validate if bacterial function is caused by increased relative abundance in diazinon enriched soil, further bacteria isolation resulted in obtaining 25 diazinon degradation strains out of 103 isolates. Notably, more than 70% (18 out of 25) isolates are identified as phylum Actinomycetota, which empirically confirms and correlates microbiome and PICRUSt2 results. In conclusion, this study provides comprehensive information from microbiome analysis to obtaining several bacteria isolates responsible for diazinon degradation, revealing that the phylum Actinomycetota is as a key taxon that facilitates microbial biodegradation in diazinon spoiled soil. This finding may assist in developing a strategy for microbial detoxification of diazinon, such as using an Actinomycetota rich synthetic community (SynCom).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.141583DOI Listing

Publication Analysis

Top Keywords

diazinon
13
diazinon degradation
12
phylum actinomycetota
12
microbial biodegradation
8
microbial community
8
diazinon exposure
8
time points
8
relative abundance
8
soil
6
actinomycetota
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!