Hepatic stellate cells (HSCs) play central roles in liver disease pathogenesis, spanning steatosis to cirrhosis and hepatocellular carcinoma. These cells, located in the liver's sinusoidal space of Disse, transition from a quiescent, vitamin A-rich state to an activated, myofibroblast-like phenotype in response to liver injury. This activation results from a complex interplay of cytokines, growth factors, and oxidative stress, leading to excessive collagen deposition and liver fibrosis, a hallmark of chronic liver diseases. Recently, HSCs have gained recognition for their dynamic, multifaceted roles in liver health and disease. Attention has shifted toward their involvement in various liver conditions, including acute liver injury, alcoholic and non-alcoholic fatty liver disease, and liver regeneration. This review aims to explore diverse functions of HSCs in these acute or chronic liver pathologies, with a focus on their roles beyond fibrogenesis. HSCs exhibit a wide range of actions, including lipid storage, immunomodulation, and interactions with other hepatic and extrahepatic cells, making them pivotal in the hepatic microenvironment. Understanding HSC involvement in the progression of liver diseases can offer novel insights into pathogenic mechanisms and guide targeted therapeutic strategies for various liver conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2024.122547 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!