The topic of biobased flame-retardant PLA has always been of great interest. In our study, we successfully synthesized a phosphorus-containing chitosan derivative (PCS) and combined it with aluminum hypophosphate (AP) to create an effective flame-retardant PLA system. PCS acted as an enhancer, enhancing the thermal performance, crystallinity, and toughness of PLA/AP. Compared to PLA modified with 12 wt% AP achieving UL-94 V-2 level and 24.3 % of limited oxygen index, PLA containing 3 wt% PCS and 9 wt% AP achieved UL-94 V-0 level and limited oxygen index of 28 %. The system testing studies such as CCT, Raman, XPS, and TG-IR results indicated that PLA/AP/PCS exhibited a dual flame-retardant mechanism of condensed and gas phases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.130648 | DOI Listing |
Sci Rep
January 2025
Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361005, China. Electronic address:
Due to the high toxicity and increasing consumption, efficient removal of phenoxyacetic acid herbicides (PAAHs) from water is imperative. In current study, a new adsorbent was prepared by modifying porous carbon derived from disused floral foam with chitosan (CS) (ACFC). Density functional theory (DFT) calculation uncovered that the amino and hydroxyl groups in the introduced CS played a critical role in the efficient adsorption of ACFC towards PAAHs.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
The sustainable flame retardancy of polymeric materials is a key focus for the direction of the next generation in the field of fire safety. Bio-derived flame retardants are gaining attention as environmentally friendly additives due to their low ecological impact and decreasing costs. These compounds can enhance char formation in polymeric materials by swelling upon heating, attributed to their functional groups.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
Probiotics are an essential dietary supplement for intestinal flora balance, inhibition of pathogenic bacteria and immune regulation. However, probiotic inactivation during gastrointestinal transportation remains a big challenge for oral administration. Hence, oral delivery systems (ODSs) based on polysaccharides have been constructed to protect probiotics from harsh environments.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea.
This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!