An understanding of the risk of gene deletion and mutation posed by endocrine-disrupting chemicals (EDCs) is necessary for the identification of etiological reagents for many human diseases. Therefore, the characterization of the genetic traits caused by developmental exposure to EDCs is an important research subject. A new regenerative approach using embryonic stem cells (ESCs) holds promise for the development of stem-cell-based therapies and the identification of novel therapeutic agents against human diseases. Here, we focused on the characterization of the genetic traits and alterations in pluripotency/stemness triggered by phthalate ester derivatives. Regarding their in vitro effects, we reported the abilities of ESCs regarding proliferation, cell-cycle control, and neural ectoderm differentiation. The expression of their stemness-related genes and their genetic changes toward neural differentiation were examined, which led to the observation that the tumor suppressor gene product p53/retinoblastoma protein 1 and its related cascades play critical functions in cell-cycle progression, cell death, and neural differentiation. In addition, the expression of neurogenic differentiation 1 was affected by exposure to di-n-butyl phthalate in the context of cell differentiation into neural lineages. The nervous system is one of the most sensitive tissues to exposure to phthalate ester derivatives. The present screening system provides a good tool for studying the mechanisms underlying the effects of EDCs on the developmental regulation of humans and rodents, especially on the neuronal development of ESCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.123722 | DOI Listing |
Neurotox Res
January 2025
Molecular Neuropsychiatry Section, Intramural Research Program, NIH/ NIDA, 21224, Baltimore, MD, U.S.A.
To identify factors involved in methamphetamine (METH) neurotoxicity, we comprehensively searched for genes which were differentially expressed in mouse striatum after METH administration using differential display (DD) reverse transcription-PCR method and sequent single-strand conformation polymorphism analysis, and found two DD cDNA fragments later identified as mRNA of Nedd4 (neural precursor cell expressed developmentally downregulated 4) WW domain-binding protein 5 (N4WBP5), later named Nedd4 family-interacting protein 1 (Ndfip1). It is an adaptor protein for the binding between Nedd4 of ubiquitin ligase (E3) and target substrate protein for ubiquitination. Northern blot analysis confirmed drastic increases in Ndfip1 mRNA in the striatum after METH injections, and in situ hybridization histochemistry showed that the mRNA expression was increased in the hippocampus and cerebellum at 2 h-2 days, in the cerebral cortex and striatum at 18 h-2 days after single METH administration.
View Article and Find Full Text PDFCell Tissue Res
January 2025
Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.
Adult tissue stem cells of the anterior pituitary gland, CD9/SOX2-positive cells, are believed to exist in the marginal cell layer (MCL) bordering the residual lumen of the Rathke's pouch. These cells migrate from the intermediate lobe side of the MCL (IL-MCL) to the anterior lobe side of the MCL and may be involved in supplying hormone-producing cells. Previous studies reported that some SOX2-positive cells of the anterior lobe differentiate into skeletal muscle cells.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.
View Article and Find Full Text PDFPsychol Med
January 2025
Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
Background: Psychostimulants and nonstimulants have partially overlapping pharmacological targets on attention-deficit/hyperactivity disorder (ADHD), but whether their neuroimaging underpinnings differ is elusive. We aimed to identify overlapping and medication-specific brain functional mechanisms of psychostimulants and nonstimulants on ADHD.
Methods: After a systematic literature search and database construction, the imputed maps of separate and pooled neuropharmacological mechanisms were meta-analyzed by Seed-based Mapping toolbox, followed by large-scale network analysis to uncover potential coactivation patterns and meta-regression analysis to examine the modulatory effects of age and sex.
J Transl Med
January 2025
Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.
Background: Spinal cord injury (SCI) triggers a complex inflammatory response that impedes neural repair and functional recovery. The modulation of macrophage phenotypes is thus considered a promising therapeutic strategy to mitigate inflammation and promote regeneration.
Methods: We employed microarray and single-cell RNA sequencing (scRNA-seq) to investigate gene expression changes and immune cell dynamics in mice following crush injury at 3 and 7 days post-injury (dpi).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!