Background: Differentiating seminomas from nonseminomas is crucial for formulating optimal treatment strategies for testicular germ cell tumors (TGCTs). Therefore, our study aimed to develop and validate a clinical-radiomics model for this purpose.

Methods: In this study, 221 patients with TGCTs confirmed by pathology from four hospitals were enrolled and classified into training (n = 126), internal validation (n = 55) and external test (n = 40) cohorts. Radiomics features were extracted from the CT images. After feature selection, we constructed a clinical model, radiomics models and clinical-radiomics model with different machine learning algorithms. The top-performing model was chosen utilizing receiver operating characteristic (ROC) curve analysis. Decision curve analysis (DCA) was also conducted to assess its practical utility.

Results: Compared with those of the clinical and radiomics models, the clinical-radiomics model demonstrated the highest discriminatory ability, with AUCs of 0.918 (95 % CI: 0.870 - 0.966), 0.909 (95 % CI: 0.829 - 0.988) and 0.839 (95 % CI: 0.709 - 0.968) in the training, validation and test cohorts, respectively. Moreover, DCA confirmed that the combined model had a greater net benefit in predicting seminomas and nonseminomas.

Conclusion: The clinical-radiomics model serves as a potential tool for noninvasive differentiation between testicular seminomas and nonseminomas, offering valuable guidance for clinical treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2024.111416DOI Listing

Publication Analysis

Top Keywords

clinical-radiomics model
16
seminomas nonseminomas
12
differentiation testicular
8
testicular seminomas
8
machine learning
8
radiomics models
8
models clinical-radiomics
8
curve analysis
8
model
7
seminomas
4

Similar Publications

Multimodal Deep Learning Fusing Clinical and Radiomics Scores for Prediction of Early-Stage Lung Adenocarcinoma Lymph Node Metastasis.

Acad Radiol

December 2024

School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, China (C.X., L.D., W.C., M.H.); Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, China (C.X., L.D., W.C., M.H.). Electronic address:

Rationale And Objectives: To develop and validate a multimodal deep learning (DL) model based on computed tomography (CT) images and clinical knowledge to predict lymph node metastasis (LNM) in early lung adenocarcinoma.

Materials And Methods: A total of 724 pathologically confirmed early invasive lung adenocarcinoma patients were retrospectively included from two centers. Clinical and CT semantic features of the patients were collected, and 3D radiomics features were extracted from nonenhanced CT images.

View Article and Find Full Text PDF

Development and validation of a radiomics nomogram for preoperative prediction of BRAF mutation status in adult patients with craniopharyngioma.

Neurosurg Rev

December 2024

Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China.

Although craniopharyngiomas are rare benign brain tumors primarily managed by surgery, they are often burdened by a poor prognosis due to tumor recurrence and long-term morbidity. In recent years, BRAF-targeted therapy has been promising, showing potential as an adjuvant or neoadjuvant approach. Therefore, we aim to develop and validate a radiomics nomogram for preoperative prediction of BRAF mutation in craniopharyngiomas.

View Article and Find Full Text PDF

CT-based clinical-radiomics model to predict progression and drive clinical applicability in locally advanced head and neck cancer.

Eur Radiol

December 2024

Medical Oncology Department, Hospital Clinico Universitario de Valencia-INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain.

Background: Definitive chemoradiation is the primary treatment for locally advanced head and neck carcinoma (LAHNSCC). Optimising outcome predictions requires validated biomarkers, since TNM8 and HPV could have limitations. Radiomics may enhance risk stratification.

View Article and Find Full Text PDF

A qBOLD-based clinical radiomics-integrated model for predicting isocitrate dehydrogenase-1 mutation in gliomas.

Med Phys

December 2024

Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Background: Quantitative blood oxygenation level-dependent (qBOLD) technique can be applied to detect tissue damage and changes in hemodynamic in gliomas. It is not known whether qBOLD-based radiomics approaches can improve the prediction of isocitrate dehydrogenase-1 (IDH-1) mutation.

Purpose: To establish a qBOLD-based clinical radiomics-integrated model for predicting IDH-1 mutation in gliomas.

View Article and Find Full Text PDF

Radiomics of multimodal ultrasound for early prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer.

Acad Radiol

December 2024

Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China (C-f.W., Y-q.W., L.W., H.F., Y.J., Q.D., L-x.J.). Electronic address:

Rationale And Objectives: To construct and validate a clinical-radiomics model based on radiomics features extracted from two-stage multimodal ultrasound and clinicopathologic information for early predicting pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer patients treated with NAC.

Materials And Methods: Consecutive women with biopsy-proven breast cancer undergoing multimodal US pretreatment and after two cycles of NAC and followed by surgery between January 2014 and November 2023 were retrospectively collected for clinical-radiomics model construction (n = 274) and retrospective test (n = 134). The predictive performance of it was further tested in a subsequent prospective internal test set recruited between January 2024 to July 2024 (n = 76).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!