Latest studies confirmed that abnormal function of histone deacetylase (HDAC) plays a pivotal role in formation of tumors and is a potential therapeutic target for treating breast cancer. In this research, in-silico drug discovery approaches via quantitative structure activity relationship (QSAR) and molecular docking simulations were adapted to 43 compounds of indazole derivatives with HDAC inhibition for anticancer activity against breast cancer. The QSAR models were built from multiple linear regression (MLR), and models predictability was cross-validated by leave-one-out (LOO) method. Based on these results, compounds C32, C26 and C31 from model 3 showed superior inhibitory activity with pIC of 9.30103, 9.1549 and 9.1549. We designed 10 novel compounds with molecular docking scores ranging from -7.9 to -9.3 kcal/mol. The molecular docking simulation results reveal that amino acid residues ILE1122 and PRO1123 play a significant role in bonding with 6CE6 protein. Furthermore, newly designed compounds P5, P2 and P7 with high docking scores of -9.3 kcal/mol, -8.9 kcal/mol and -8.8 kcal/mol than FDA-approved drug Raloxifene (-8.5 kcal/mol) and aid in establishment of potential drug candidate for HDAC inhibitors. The in-silico ADME functionality is used in the final phase to evaluate newly designed inhibitors as potential drug candidates. The results suggest that newly designed compounds P5, P2 and P7 can be used as a potential anti-breast cancer drug candidate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiolchem.2024.108035 | DOI Listing |
Chem Biol Drug Des
January 2025
Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani, Rajasthan, India.
A set of coumarin-3-carboxamide analogues were designed, synthesized, and evaluated for their ability to impede pancreatic lipase (PL) activity. Out of all the analogues, 5dh and 5de demonstrated promising inhibitory activity against PL, as indicated by their respective IC values of 9.20 and 11.
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
Target cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors; 5-([2,5-Dihydroxybenzyl]amino)salicylamides (Compounds 1-11) were examined for potential anticancer activity, with a trial to assess the underlying possible mechanisms. Compounds were assessed at a single dose against 60 cancer cell lines panel and those with the highest activity were tested in the five-dose assay. COMPARE analysis was conducted to explore potential mechanisms underlying their biological activity.
View Article and Find Full Text PDFChem Biodivers
January 2025
Qingdao Agricultural University, School of Life Sciences, Qingdao, CHINA.
Three new pyridine derivatives, irpelactedines A-C (1-3), and a new furan derivative, irpelactedine D (5), along with two structurally related known compounds, irpexidine A (4) and 5-carboxy-2-furanpropanoic acid (6), were isolated from the medicinal fungus Irpex lacteus SY1002. Their structures were elucidated through NMR and mass spectral analyses, combined with density functional theory calculations of ECD data. Evaluation of angiotensin-converting enzyme (ACE) inhibitory activity revealed that compounds 1 and 3 displayed moderate inhibition, with IC50 values of 31.
View Article and Find Full Text PDFFEBS Lett
January 2025
Allgemeine Botanik, Karlsruhe Institute of Technology, Joseph Kölreuter Institut für Pflanzenwissenschaften (JKIP), Karlsruhe, Germany.
Phytochromes are biliprotein photoreceptors found in bacteria, fungi, and plants. The soil bacterium Agrobacterium fabrum has two phytochromes, Agp1 and Agp2, which work together to control DNA transfer to plants and bacterial conjugation. Both phytochromes interact as homodimeric proteins.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh.
Heliotropium indicum is well-known for its diverse medicinal properties, traditionally utilized to treat ailments such as diabetes, obesity, bacterial infections, inflammation, and diarrhea. This study aims to explore the anti-inflammatory effects of the extract using in vitro methods and to assess its drug-likeness potential using docking, PASS and ADME. Fractionations of crude methanol extract (CME) were undertaken in n-hexane (NHF), chloroform (CHF), and ethyl acetate (EAF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!