Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Alzheimer's disease (AD) is the most prevalent type of dementia, disproportionately affecting females, who make up nearly 60% of diagnosed cases. In AD patients, the accumulation of beta-amyloid (Aβ) in the brain triggers a neuroinflammatory response driven by neuroglia, worsening the condition. We have previously demonstrated that VU0486846, an orally available positive allosteric modulator (PAM) targeting M1 muscarinic acetylcholine receptors, enhances cognitive function and reduces Aβ pathology in female APPswe/PSEN1ΔE9 (APP/PS1) mice. However, it remained unclear whether these improvements were linked to a decrease in neuroglial activation. To investigate, we treated nine-month-old APP/PS1 and wildtype mice with VU0486846 for 8 weeks and analyzed brain slices for markers of microglial activation (ionized calcium binding adaptor molecule 1, Iba1) and astrocyte activation (Glial fibrillary acidic protein, GFAP). We find that VU0486846 reduces the presence of Iba1-positive microglia and GFAP-positive astrocytes in the hippocampus of female APP/PS1 mice and limits the recruitment of these cells to remaining Aβ plaques. This study sheds light on an additional mechanism through which novel M1 mAChR PAMs exhibit disease-modifying effects by reducing neuroglial activation and underscore the potential of these ligands for the treatment of AD, especially in females.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2024.116388 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!