The role of BAFF and BAFF-R inhibitors in the treatment of immune thrombocytopenia; a focused review.

Int Immunopharmacol

Skin Repair Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran. Electronic address:

Published: April 2024

AI Article Synopsis

Article Abstract

Immune thrombocytopenia (ITP) is an autoimmune-driven disease characterized by increased destruction and impaired platelet production resulting in an enhanced risk of bleeding. Immunosuppressant agents are the most common treatment strategies for ITP. Despite their efficacy, these medications often cause unpredictable side effects. Recent investigations revealed that patients with ITP exhibit elevated B-cell activating factor (BAFF) levels in both their spleens and serum. Belimumab, a BAFF inhibitor, illustrated a promising therapeutic avenue for managing ITP by interfering with BAFF activity and long-lived plasma cell production. Both clinical and experimental studies have yielded positive outcomes when combining rituximab with an anti-BAFF monoclonal antibody in treating ITP. In addition, ianalumab, a monoclonal antibody with a dual mechanism that targets BAFF-R and deletes peripheral BAFF-R B cells, is currently being used for ITP treatment [NCT05885555]. The upcoming results from novel BAFF inhibitors, such as ianalumab, could offer clinicians an additional therapeutic option for treating ITP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.111827DOI Listing

Publication Analysis

Top Keywords

immune thrombocytopenia
8
monoclonal antibody
8
treating itp
8
itp
7
role baff
4
baff baff-r
4
baff-r inhibitors
4
inhibitors treatment
4
treatment immune
4
thrombocytopenia focused
4

Similar Publications

Platelet-Neutrophil aggregate formation induces NLRP3 inflammasome activation in VITT.

J Thromb Haemost

December 2024

Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil. Electronic address:

Background: Although rare, vaccine-induced thrombotic thrombocytopenia (VITT) following adenoviral vector COVID-19 vaccination is a concerning and often severe adverse effect of vaccination. The generation of high anti-platelet factor 4 (PF4) antibody titers, promotes the formation of immune complexes capable of activating platelets and neutrophils through FcγRIIa.

Objective: Given that Platelet-leukocyte aggregate (PLA) formation and inflammasome activation are common features of thromboinflammatory diseases, we aimed to evaluate if these are also features of VITT.

View Article and Find Full Text PDF

Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare but serious prothrombotic adverse event following vaccination with adenovector-based COVID-19 vaccines. Laboratory findings indicate that anti-platelet factor 4 (PF4) immunoglobulin G antibodies are the causing factor for the onset of thromboembolic events in VITT. However, molecular mechanisms of cellular interactions, signaling pathways and involvement of different cell types in VITT antibody-mediated thrombosis are not fully understood.

View Article and Find Full Text PDF

Human platelet antigens (HPAs) play a clinically significant role in alloimmunization and the development of immune-mediated disorders such as immune thrombocytopenia (ITP), fetal and neonatal alloimmune thrombocytopenia (FNAIT), and post-transfusion purpura (PTP). Understanding the genetic profiles of HPAs is critical for preventing and treating these conditions. Given the limitations of serological methods in determining HPA genotypes, this study aims to investigate the association between the genotypes of HPA1, HPA2, HPA3, HPA4, and HPA15 antigens and autoimmune thrombocytopenia in Lorestan Province, utilizing the PCR-SSP method.

View Article and Find Full Text PDF

During biosimilar drug development, conducting a clinical trial of biosimilar efficacy in patients may become necessary in the presence of residual uncertainty regarding the biosimilarity of the drugs. In the development of the biosimilar romiplostim GP40141, we aimed to use a model-based in silico clinical trial (ISCT) approach to optimize the planned biosimilar efficacy trial in patients with immune thrombocytopenia. The population pharmacokinetic/pharmacodynamic model for healthy volunteers was modified and validated to describe platelet dynamics in patients with immune thrombocytopenia.

View Article and Find Full Text PDF

Immune thrombocytopenia (ITP) is a common hematological disorder. Our previous study has found that exosomal miR-146a-5p derived from bone marrow mesenchymal stromal cells (BMSCs) regulate Th17/Treg balance to alleviate ITP. This work further investigated the role of miR-146a-5p in ITP with pregnancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!