The unreasonable use of organophosphorus pesticides leads to excessive pesticide residues in food, seriously threatening public health, and the potential of surface-enhanced Raman spectroscopy (SERS) technology, incorporating a metal-organic framework, is substantial for the rapid detection of trace pesticide residues. Here, a novel FeO@NH-MIL-101(Fe)@Ag (FNMA) SERS nanosensor was developed. Results indicated that the FNMA had a high enhancement factor of 1.53 × 10, a low limit of detection (LOD) of 4.55 × 10 M, and a relative standard deviation of 7.73 % for 4-nitrothiophenol, demonstrating its good SERS sensitivity and uniformity, and also possessed good storage stability for one month. In quantifying fenthion and methyl parathion in standard solutions and apple juice in the range of 0.05/0.02-20 mg/L, it showed LODs of 3.02 × 10 mg/L and 1.43 × 10 mg/L, and 0.0407 and 0.0075 mg/L, respectively, demonstrating potentials in ultrasensitive trace detection of pesticides in food.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.138846 | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea.
Plants communicate through volatile organic compounds (VOCs), but real-time monitoring of VOCs for plant intercommunication is not practically possible yet. A nanobionic VOC sensor plant is created to study VOC-mediated plant intercommunication by incorporating surface-enhanced Raman scattering (SERS) nanosensors into a living plant. This sensor allows real-time monitoring of VOC with a sensitivity down to the parts per trillion level.
View Article and Find Full Text PDFSmall Methods
December 2024
Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences, Leninsky pr., 31, building 4, Moscow, 119071, Russia.
A novel phthalocyanine-based hybrid nanofilm is for the first time successfully applied as an oxidative platform for surface enhanced Raman spectroscopy (SERS) sensing to fine-resolve Raman-inactive compounds. The hybrid is formed by self-assembly of zinc(II) 2,3,9,10,16,17,23,24-Octa[(3',5'-dicarboxy)-phenoxy]phthalocyaninate (ZnPc*) with the solid-supported monolayer of graphene oxide (GO) mediated by zinc acetate metal cluster. Atomic force microscopy, UV-vis and fluorescence spectroscopies confirm that this simple coordination motive in combination with molecular structure of ZnPc* prevents contact quenching of the light-excited triplet state through aromatic stacking with GO particles.
View Article and Find Full Text PDFACS Nano
December 2024
Département de Chimie, Institut Courtois, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal H3C 3J7, Québec, Canada.
A surface-enhanced Raman scattering (SERS) biosensor with minimal invasiveness and high spatial resolution has been developed as a nanoendoscope to detect changes in protein concentrations at specific sites in biological tissues. While generally applicable to various tissues or proteins, the SERS nanoendoscope is demonstrated for the quantitative detection of S100β, an astrocytic protein whose plasmatic levels are known to vary in several neuropathologies such as Alzheimer's disease, schizophrenia, Down syndrome, Parkinson's disease and epilepsy, but for which intratissular levels have not been locally monitored, demonstrating key attributes of the SERS nanoendoscope. The SERS nanoendoscope is fabricated with densely and well-dispersed deposited gold nanoparticles modified with anti-S100β primary antibody on pulled optical fibers with a tip diameter of 700 nm, conducive to noninvasive and regiospecific detection of the S100β protein in different regions of mouse brain slices under different physiological stimuli with micrometer resolution.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China. Electronic address:
Colorant adulteration is a common problem in tea safety control; thus, a rapid identification method is required. In this study, we optimized the fabrication parameters of various sensors to enhance their performance. R6G was used as a probe molecule, demonstrating that the sensnor remained stable for 120 days.
View Article and Find Full Text PDFJ Biophotonics
December 2024
Nanosensors and Clean Energy Laboratory, PSG Institute of Advanced Studies, Coimbatore, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!