Adsorption for recovery of low-concentration platinum (Pt) from the complex composition of acidic digestates was challenging because of slow kinetic and poor affinity. It was expected to be overcome by the improvement of pore size distribution and adsorption site activity. Herein, a series of Prussian blue etchings (PBE) with porosity-rich and activity-high cyano (CN) was synthesized to recover low-concentration Pt. The N isotherm results showed that the pore structure evolved from mesoporous to microporous. The Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations results revealed that the modulation of electronic structure converted Fe to Fe in [Fe(CN)]. The coexistence of micro- and meso-pore structures provided channels to accelerate adsorption and ensured Pt enrichment. The regulation of Fe valence state activated CN, which reinforced the strength of coordination interaction between Pt and Fe-CN- at N-atom. The adsorption rate and maximum capacity of PBE1 were 4.4 and 2.5 times higher than those of PB, respectively, due to the dual efficacy of accelerated kinetic and reinforced coordination. This study systematically analyzes the pivotal role of pore and electronic structure modulation in adsorption kinetic and affinity, which provides a novel strategy for Pt targeted recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.133913 | DOI Listing |
Small
January 2025
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuO under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.
View Article and Find Full Text PDFSmall
January 2025
School of Materials and Physics & Center of Mineral Resource Waste Recycling, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
Designing spent graphite anodes from lithium-ion batteries (LIBs) for applications beyond regenerated batteries offers significant potential for promoting the recycling of spent LIBs. The battery-grade graphite, characterized by a highly graphitized structure, demonstrates excellent conductive loss capabilities, making it suitable for microwave absorption. During the Li-ion intercalation and deintercalation processes in battery operation, the surface layer of spent graphite (SG) becomes activated, forming oxygen-rich functional groups that enhance the polarization loss mechanism.
View Article and Find Full Text PDFNanoscale
January 2025
Physics Department E20, School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany.
-Armchair graphene nanoribbons (nAGNRs) are promising components for next-generation nanoelectronics due to their controllable band gap, which depends on their width and edge structure. Using non-metal surfaces for fabricating nAGNRs gives access to reliable information on their electronic properties. We investigated the influence of light and iron adatoms on the debromination of 4,4''-dibromo--terphenyl precursors affording poly(-phenylene) (PPP as the narrowest GNR) wires through the Ullmann coupling reaction on a rutile TiO(110) surface, which we studied by scanning tunneling microscopy and X-ray photoemission spectroscopy.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States.
Triplet-triplet energy transfer (TEnT) is of particular interest in various photochemical, photobiological, and energy science processes. It involves the exchange of spin and energy of electrons between two molecular fragments. Here, quasi-diabatic self-consistent field solutions were used to obtain the diabatic states involved in TEnT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!