Marine algal toxin contamination is a major threat to human health. Thus, it is crucial to develop rapid and on-site techniques for detecting algal toxins. In this work, we developed colorimetric cloth and paper hybrid microfluidic devices (μCPADs) for rapid detection of gonyautoxin (GTX1/4) combined with molecularly imprinted polymers. In addition, the metal-organic frameworks (MOFs) composites were applied for this approach by their unique features. Guanosine serves as a dummy template for surface imprinting and has certain structural advantages in recognizing gonyautoxin. MOF@MIPs composites were able to perform a catalytic color reaction using hydrogen peroxide-tetramethylbenzidine for the detection of GTX1/4. The cloth-based sensing substrates were assembled on origami μPADs to form user-friendly, miniaturized colorimetric μCPADs. Combined with a smartphone, the proposed colorimetric μCPADs successfully achieved a low limit of detection of 0.65 μg/L within the range of 1-200 μg/L for rapid visual detection of GTX1/4. Moreover, the GTX1/4 of real shellfish and seawater samples were satisfactorily detected to indicate the application prospect of the μCPADs. The proposed method shows good potential in the low-cost, stable establishment of assays for the rapid detection of environmental biotoxins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.133969 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!