Role of bipyridyl in enhancing ferrate oxidation toward micropollutants.

J Hazard Mater

Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production,School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, Guangdong Province, PR China. Electronic address:

Published: May 2024

Enhancing Fe(VI) oxidation ability by generating high-valent iron-oxo species (Fe(IV)/Fe(V)) has attracted continuous interest. This work for the first time reports the efficient activation of Fe(VI) by a well-known aza-aromatic chelating agent 2,2'-bipyridyl (BPY) for micropollutant degradation. The presence of BPY increased the degradation constants of six model compounds (i.e., sulfamethoxazole (SMX), diclofenac (DCF), atenolol (ATL), flumequine (FLU), 4-chlorophenol (4-CP), carbamazepine (CBZ)) with Fe(VI) by 2 - 6 folds compared to those by Fe(VI) alone at pH 8.0. Lines of evidence indicated the dominant role of Fe(IV)/Fe(V) intermediates. Density functional theory calculations suggested that the binding of Fe(III) to one or two BPY molecules initiated the oxidation of Fe(III) to Fe(IV) by Fe(VI), while Fe(VI) was reduced to Fe(V). The increased exposures of Fe(IV)/Fe(V) were experimentally verified by the pre-generated Fe(III) complex with BPY and using methyl phenyl sulfoxide as the probe compound. The presence of chloride and bicarbonate slightly affected model compound degradation by Fe(VI) in the presence of BPY, while a negative effect of humic acid was obtained under the same conditions. This work demonstrates the potential of N-donor heterocyclic ligand to activate Fe(VI) for micropollutant degradation, which is instructive for the Fe(VI)-based oxidation processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.133982DOI Listing

Publication Analysis

Top Keywords

fevi
8
micropollutant degradation
8
presence bpy
8
bpy
5
role bipyridyl
4
bipyridyl enhancing
4
enhancing ferrate
4
oxidation
4
ferrate oxidation
4
oxidation micropollutants
4

Similar Publications

Roles of iron (V) and iron (IV) species in ferrate-triggered oxidation of phenolic pollutants and their transformation induced by phenoxyl radical.

Water Res

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:

Ferrate is a promising oxidizing agent for water treatment. Understanding the reaction characteristics and transformation mechanism of high-valent intermediate irons [Fe(V) and Fe(IV)] remains challenging. Here, we systematically investigated the roles of Fe(VI), Fe(V), and Fe(IV) species for acetaminophen oxidation using reaction kinetics, products, and stoichiometries.

View Article and Find Full Text PDF

Insight on the optimized electronic structure of carbon nitride on ultrafast water treatment via photocatalytic activation of ferrate.

J Hazard Mater

December 2024

Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China. Electronic address:

Ferrate (Fe(VI)) is a widely used water purifier and is easily affected by external factors. Given that the actual water environment conditions are complicated, this study designed an oxygen-doped carbon nitride (CNO) with rich electron sites to explore whether direct electron transfer promotes the degradation efficiency of Fe(VI) for pollutants under visible light. For comparison, we also prepared phosphorus-doped carbon nitride (CNP), which has electron-deficient sites and indirect electron transfer.

View Article and Find Full Text PDF

Relationship between gender and perioperative clinical features in lung cancer patients who underwent VATS lobectomy.

J Cardiothorac Surg

December 2024

Department of Thoracic Surgery, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610044, P.R. China.

Objectives: Compare the differences in perioperative clinical characteristics of lung cancer patients of different genders who have undergone VATS lobectomy, and explore the impact of these differences on the short-term prognosis of patients.

Methods: A total of 338 consecutive patients with lung cancer who underwent VATS lobectomy in our hospital from August 2021 to August 2022 were retrospectively analyzed, they were divided into male group and female group. The perioperative characteristics and short-term prognosis of different groups were compared.

View Article and Find Full Text PDF

Insight into the enhanced removal of dimethoate by ferrate(Ⅵ)/biochar system: Contributions of adsorption and active oxidants.

J Hazard Mater

December 2024

Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Haidian District, Beijing 100083, China.

Dimethoate is a toxic organophosphorus insecticide and its contamination of water poses a threat to the surrounding ecosystem. In order to enhance the removal effect of ferrate (Fe(VI)) on dimethoate, modified graphene-like biochar (SIZBC) with reduction and adsorption properties was prepared in this study. Compared with Fe(VI) alone, the removal of dimethoate by Fe(VI)/SIZBC increased from 26 % to more than 97 %, and the reaction rate was accelerated by 34 times.

View Article and Find Full Text PDF

A green method on dipole solvent as "Activators": γ-valerolactone/HO system promoted degradation of ciprofloxacin by ferrate(Ⅵ).

Water Res

March 2025

Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.

This paper investigates the efficient degradation of ciprofloxacin (CIP) in a sustainable γ-valerolactone (GVL) and water (H₂O) mixed system by controlling proton transfer and reducing the self-decay rate of Fe(VI). The kinetic model reveals that the GVL/H₂O system exhibits a rate constant of (9.7 ± 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!