AI Article Synopsis

  • The study develops an MMP-responsive hydrogel using a tetra-armed PEG network that releases therapeutic factors when inflammation occurs.
  • The hydrogel encapsulates phosphatidylserine (PS), which is released during inflammation to support bone regeneration and maintain drug release throughout the healing process.
  • In vivo and in vitro results show that the hydrogel promotes the transformation of macrophages to an anti-inflammatory state and enhances bone cell differentiation, making it a promising strategy for bone tissue engineering.

Article Abstract

Inflammation-responsive hydrogels loaded with therapeutic factors are effective biomaterials for bone tissue engineering and regenerative medicine. In this study, a matrix metalloproteinase (MMP)-responsive injectable hydrogel is constructed by integrating an MMP-cleavable peptide (pp) into a covalent tetra-armed poly-(ethylene glycol) (PEG) network for precise drug release upon inflammation stimulation. To establish a pro-regenerative environment, phosphatidylserine (PS) is encapsulated into a scaffold to form the PEG-pp-PS network, which could be triggered by MMP to release a large amount of PS during the early stage of inflammation and retain drug release persistently until the later stage of bone repair. The hydrogel is found to be mechanically and biologically adaptable to the complex bone defect area. In vivo and in vitro studies further demonstrated the ability of PEG-pp-PS to transform macrophages into the anti-inflammatory M2 phenotype and promote osteogenic differentiation, thus, resulting in new bone regeneration. Therefore, this study provides a facile, safe, and promising cell-free strategy on simultaneous immunoregulation and osteoinduction in bone engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11132073PMC
http://dx.doi.org/10.1002/advs.202306924DOI Listing

Publication Analysis

Top Keywords

bone regeneration
8
drug release
8
bone
6
matrix metalloproteinase-responsive
4
metalloproteinase-responsive hydrogel
4
hydrogel on-demand
4
release
4
on-demand release
4
release phosphatidylserine
4
phosphatidylserine promotes
4

Similar Publications

Aim: This study aimed to evaluate and compare the results of combination therapy involving bone grafting and two different resorbable collagen membranes in 1-, 2- and 3-wall infrabony defects.

Methods: A total of 174 patients with infrabony defects (≥ 7 mm periodontal probing depth) were randomized to receive deproteinized bovine bone mineral (DBBM) with either a native porcine non-crosslinked collagen membrane (N-CM, control, n = 87) or a novel porcine crosslinked collagen membrane (C-CM, test, n = 87). Clinical parameters, including periodontal probing depth (PPD), clinical attachment level (CAL), and gingival recession (GR), were recorded at baseline, 12 weeks, and 24 weeks.

View Article and Find Full Text PDF

Hydroxyapatite nanoparticles (HANPs) are becoming increasingly crucial in dental implant applications as they are highly compatible with biological systems, actively support biological processes, and closely resemble bone minerals. This review covers the latest progress in how HANPs are made, studied, and used in dentistry. It looks at critical methods for creating HANPs, such as sol-gel, microwave hydrothermal synthesis, and biomimetic approaches, and how they affect the particles' size, structure, and activity.

View Article and Find Full Text PDF

Evaluation of sticky bone in guided bone regeneration in the aesthetic area of the anterior teeth: a retrospective study.

Int J Oral Maxillofac Surg

January 2025

Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China. Electronic address:

The retrospective study aimed to compare the space-maintaining effects of sticky bone (bone graft matrix enriched with injectable platelet-rich fibrin) and titanium mesh for bone augmentation in the aesthetic zone. Patients who underwent single implant placement and had type 2/4 alveolar bone defects (buccal bone wall loss is >50% of the expected implant length) were screened for inclusion in this study. The labial bone plate width was measured at 1, 3, and 5 mm below the apical implant platform on cone beam computed tomography images taken immediately and 6 months after surgery.

View Article and Find Full Text PDF

Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement.

Mol Biol Rep

January 2025

Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.

View Article and Find Full Text PDF

Emerging techniques of additive manufacturing, such as vat-based three-dimensional (3D) bioprinting, offer novel routes to prepare personalized scaffolds of complex geometries. However, there is a need to develop bioinks suitable for clinical translation. This study explored the potential of bacterial-sourced methacrylate levan (LeMA) as a bioink for the digital light processing (DLP) 3D bioprinting of bone tissue scaffolds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!