A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimized kernel extreme learning machine using Sine Cosine Algorithm for prediction of unconfined compression strength of MICP cemented soil. | LitMetric

Optimized kernel extreme learning machine using Sine Cosine Algorithm for prediction of unconfined compression strength of MICP cemented soil.

Environ Sci Pollut Res Int

School of Resources and Safety Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China.

Published: April 2024

Microbially induced calcite precipitation (MICP) is an eco-friendly bio-remediation technology. The unconfined compressive strength (UCS) of MICP cemented soil is an important indicator of repair effectiveness. This study proposes a machine learning technique utilizing the Sine Cosine Algorithm (SCA) to optimize the regularization coefficient C and kernel width γ of the kernel extreme learning machine (KELM) to predict the UCS of MICP cemented soil. To evaluate the performance of the proposed models, a dataset containing 180 groups of the UCS of MICP cemented soil was obtained. The results obtained by SCA-KELM were compared with those obtained by the Random Forest algorithm (RF), Support Vector Machine (SVM), and KELM. The performance of these models was evaluated by the scores of MAE, RMSE, and R. The results indicate that the SCA-KELM algorithm exhibits optimal prediction performance (Total score: 21). After optimizing KELM with SCA, the total score improved by 110%, suggesting that SCA significantly enhances the KELM performance. After model development, the optimal population size for SCA-KELM was determined to be 50. Based on the mutual information test, an innovative method was developed for categorizing factor sensitivity by employing importance scores as the partitioning criterion. This method categorizes the influencing factors into three tiers: high (importance score: 8.03-11.14%), medium (importance score: 5.93-7.25%), and low (importance score: 3.23-5.18%). These results suggest that the proposed SCA-KELM algorithm can be regarded as a powerful tool for predicting the UCS of MICP cemented soil.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-32687-2DOI Listing

Publication Analysis

Top Keywords

micp cemented
20
cemented soil
20
ucs micp
16
kernel extreme
8
extreme learning
8
learning machine
8
sine cosine
8
cosine algorithm
8
kelm performance
8
sca-kelm algorithm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!