A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis and Crystallization Mechanism for SAPO-34 Zeolite Derived from Magadiite. | LitMetric

Synthesis and Crystallization Mechanism for SAPO-34 Zeolite Derived from Magadiite.

Chempluschem

School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu, 221116, China.

Published: August 2024

In this work, we explored the hydrothermal synthesize and crystallization process of SAPO-34 zeolites from two-dimensional layered silicate magadiite by using tetraethylammonium hydroxide (TEAOH) as a templating agent. Comprehensive characterization was conducted by XRD, SEM, FTIR, Raman, and BET. Time-resolved PXRD analysis revealed that SAPO-34 zeolite exhibited a steep growth curve when the crystallization time was 30 h, and the crystallinity reached 98.65 % at 48 h. Specifically, the disruption of the magadiite layer exposed charged silanol groups on the surface, fostering an affinity for AlO and PO species, thereby initiating the nucleation process. Under the guidance of TEAOH, these nucleation sites transformed into SAPO-34 nuclei, gradually advancing towards crystallization. FTIR and Raman analyses affirmed the presence of 6Rs, followed by D6R and 4Rs SBUs, along with the characteristic CHA structure. Combined with Si NMR established that disaggregated silicate minerals served as zeolite synthesis "seeds", enhancing nucleation sites and overall crystallization efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.202400104DOI Listing

Publication Analysis

Top Keywords

sapo-34 zeolite
8
ftir raman
8
nucleation sites
8
synthesis crystallization
4
crystallization mechanism
4
sapo-34
4
mechanism sapo-34
4
zeolite derived
4
derived magadiite
4
magadiite work
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!