Background: Diffuse brain injury (DBI) models are characterized by intense global brain inflammation and edema, which characterize the most severe form of TBI. In a previous experiment, we found that fingolimod promoted recovery after controlled cortical impact injury (CCI) by modulating inflammation around brain lesions. However, it remains unclear whether fingolimod can also attenuate DBI because of its different injury mechanisms. Furthermore, whether fingolimod has additional underlying effects on repairing DBI is unknown.

Methods: The impact acceleration model of DBI was established in adult Sprague-Dawley rats. Fingolimod (0.5 mg/kg) was administered 0.5, 24, and 48 h after injury for 3 consecutive days. Immunohistochemistry, immunofluorescence analysis, cytokine array, and western blotting were used to evaluate inflammatory cells, inflammatory factors, AQP4 polarization, apoptosis in brain cells, and the accumulation of APP after DBI in rats. To evaluate the function of the glymphatic system (GS), a fluorescent tracer was injected into the cistern. The neural function of rats with DBI was evaluated using various tests, including the modified neurological severity score (mNSS), horizontal ladder-crossing test, beam walking test, and tape sensing and removal test. Brain water content was also measured.

Results: Fingolimod administration for 3 consecutive days could reduce the levels of inflammatory cytokines, neutrophil recruitment, microglia, and astrocyte activation in the brain following DBI. Moreover, fingolimod reduced apoptotic protein expression, brain cell apoptosis, brain edema, and APP accumulation. Additionally, fingolimod inhibited the loss of AQP4 polarization, improved lymphatic system function, and reduced damage to nervous system function. Notably, inhibiting the GS weakened the therapeutic effect of fingolimod on the neurological function of rats with DBI and increased the accumulation of APP in the brain.

Conclusions: In brief, these findings suggest that fingolimod alleviates whole-brain inflammation and GS system damage after DBI and that inhibiting the GS could weaken the positive effect of fingolimod on nerve function in rats with DBI. Thus, inhibiting inflammation and regulating the GS may be critical for the therapeutic effect of fingolimod on DBI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924110PMC
http://dx.doi.org/10.1111/cns.14669DOI Listing

Publication Analysis

Top Keywords

fingolimod
12
aqp4 polarization
12
function rats
12
rats dbi
12
dbi
11
brain
9
diffuse brain
8
brain injury
8
glymphatic system
8
consecutive days
8

Similar Publications

The largest risk factor for dementia is age. Heterochronic blood exchange studies have uncovered age-related blood factors that demonstrate 'pro-aging' or 'pro-youthful' effects on the mouse brain. The clinical relevance and combined effects of these factors for humans is unclear.

View Article and Find Full Text PDF

Efficacy and safety of disease-modifying therapies in pediatric-onset multiple sclerosis: A systematic review of clinical trials and observational studies.

Mult Scler Relat Disord

January 2025

Department of Nutrition and Drug Research, Faculty of Health Sciences, Institute of Public Health, Jagiellonian University Medical College, Skawińska Street 8, 31-066 Krakow, Poland. Electronic address:

Objective: This study aimed to review the efficacy and safety profile of disease-modifying therapies (DMTs) in patients with relapsing pediatric-onset multiple sclerosis (POMS).

Methods: A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Published randomized controlled trials (RCTs), nonrandomized studies with a control group, large single-arm studies, and ongoing (unpublished) studies investigating the use of approved and unapproved DMTs in POMS were included.

View Article and Find Full Text PDF

Background: Characterizing Cladribine tablets prescription pattern in daily clinical practice is crucial for optimizing multiple sclerosis (MS) treatment.

Objectives: To describe efficacy, safety profile and new disease-modifying therapy (DMT) prescriptions following Cladribine treatment.

Design: Independent retrospective cohort study in patients followed at six Italian MS centres.

View Article and Find Full Text PDF

Introduction: FTY720 bioactive lipid has proliferative, osteoinductive, chemo attractive, and angiogenic properties, being thus a potential exogenous administered agent for promotion of bone regeneration. Herein we developed FTY720-loaded liposomes as a potential delivery system that could retain and prolong the bioactivity of the bioactive lipid and at the same time reduce its cytotoxicity (at high doses).

Methods: FTY720 liposomes were prepared by thin-lipid hydration and microfluidic flow focusing, and evaluated for their ability to induce proliferation, osteoinduction, and chemoattraction in three cell types: MC3T3-E1 pre-osteoblast cells, L929 fibroblast cells, and ATDC5 chondrogenic cells.

View Article and Find Full Text PDF

Radiotherapy (RT) remains crucial in treating both primary and metastatic central nervous system cancer. Despite advancements in modern techniques that mitigate some toxic adverse effects, magnetic resonance imaging (MRI) scans still reveal a wide range of radiation-induced changes. Radiation can adversely affect neuroglial cells and their precursors, potentially triggering a demyelinating pattern similar to multiple sclerosis (MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!