In the context of rare genetic diseases caused by nonsense mutations, the concept of induced stop codon readthrough (SCR) represents an attractive avenue in the ongoing search for improved treatment options. Epidermolysis bullosa (EB)-exemplary for this group of diseases-describes a diverse group of rare, blistering genodermatoses. Characterized by extreme skin fragility upon minor mechanical trauma, the most severe forms often result from nonsense mutations that lead to premature translation termination and loss of function of essential proteins at the dermo-epidermal junction. Since no curative interventions are currently available, medical care is mainly limited to alleviating symptoms and preventing complications. Complementary to attempts of gene, cell and protein therapy in EB, SCR represents a promising medical alternative. While gentamicin has already been examined in several clinical trials involving EB, other potent SCR inducers, such as ataluren, may also show promise in treating the hitherto non-curative disease. In addition to the extensively studied aminoglycosides and their derivatives, several other substance classes-non-aminoglycoside antibiotics and non-aminoglycoside compounds-are currently under investigation. The extensive data gathered in numerous in vitro experiments and the perspectives they reveal in the clinical setting will be discussed in this review.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/exd.15042 | DOI Listing |
Sci Rep
December 2024
Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), 20054, Italy.
The CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental disorder characterized by early-onset epilepsy, intellectual disability, motor and visual dysfunctions. The causative gene is CDKL5, which codes for a kinase required for brain development. There is no cure for CDD patients; treatments are symptomatic and focus mainly on seizure control.
View Article and Find Full Text PDFMol Biol (Mosk)
December 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia.
Eukaryotic translation release factor eRF1 is an important cellular protein that plays a key role in translation termination, nonsense-mediated mRNA decay (NMD), and readthrough of stop codons. The amount of eRF1 in the cell influences all these processes. The mechanism of regulation of eRF1 translation through an autoregulatory NMD-dependent expression circuit has been described for plants and fungi, but the mechanisms of regulation of human eRF1 translation have not yet been studied.
View Article and Find Full Text PDFFEBS Lett
December 2024
Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA.
Translation terminates at UAG (amber), UGA (opal), and UAA (ochre) stop codons. In nature, readthrough of stop codons can be substantially enhanced by suppressor tRNAs. Stop-codon suppression also provides powerful tools in synthetic biology and disease treatment.
View Article and Find Full Text PDFNew Phytol
November 2024
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
bioRxiv
December 2024
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
Premature termination codon (PTC) diseases, arising as a consequence of nonsense mutations in a patient's DNA, account for approximately 12% of all human disease mutations. Currently there are no FDA approved treatments for increasing PTC readthrough in nonsense mutation diseases, although one translational readthrough inducing drug, ataluren, has had conditional approval for treatment of Duchenne muscular dystrophy in Europe and elsewhere for 10 years. Ataluren displays consistent low toxicity in clinical trials for treatment of several different PTC diseases, but its therapeutic effects on such diseases are inconsistent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!