A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Feature Fusion for Multi-Coil Compressed MR Image Reconstruction. | LitMetric

Feature Fusion for Multi-Coil Compressed MR Image Reconstruction.

J Imaging Inform Med

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.

Published: August 2024

Magnetic resonance imaging (MRI) occupies a pivotal position within contemporary diagnostic imaging modalities, offering non-invasive and radiation-free scanning. Despite its significance, MRI's principal limitation is the protracted data acquisition time, which hampers broader practical application. Promising deep learning (DL) methods for undersampled magnetic resonance (MR) image reconstruction outperform the traditional approaches in terms of speed and image quality. However, the intricate inter-coil correlations have been insufficiently addressed, leading to an underexploitation of the rich information inherent in multi-coil acquisitions. In this article, we proposed a method called "Multi-coil Feature Fusion Variation Network" (MFFVN), which introduces an encoder to extract the feature from multi-coil MR image directly and explicitly, followed by a feature fusion operation. Coil reshaping enables the 2D network to achieve satisfactory reconstruction results, while avoiding the introduction of a significant number of parameters and preserving inter-coil information. Compared with VN, MFFVN yields an improvement in the average PSNR and SSIM of the test set, registering enhancements of 0.2622 dB and 0.0021 dB respectively. This uplift can be attributed to the integration of feature extraction and fusion stages into the network's architecture, thereby effectively leveraging and combining the multi-coil information for enhanced image reconstruction quality. The proposed method outperforms the state-of-the-art methods on fastMRI dataset of multi-coil brains under a fourfold acceleration factor without incurring substantial computation overhead.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300769PMC
http://dx.doi.org/10.1007/s10278-024-01057-2DOI Listing

Publication Analysis

Top Keywords

feature fusion
12
image reconstruction
12
magnetic resonance
8
proposed method
8
feature
5
multi-coil
5
image
5
fusion multi-coil
4
multi-coil compressed
4
compressed image
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!