Accurate lesion diagnosis through computed tomography (CT) and advances in laparoscopic or robotic surgeries have increased partial nephrectomy survival rates. However, accurately marking the kidney resection area through the laparoscope is a prevalent challenge. Therefore, we fabricated and evaluated a 4D-printed kidney surgical guide (4DP-KSG) for laparoscopic partial nephrectomies based on CT images. The kidney phantom and 4DP-KSG were designed based on CT images from a renal cell carcinoma patient. 4DP-KSG were fabricated using shape-memory polymers. 4DP-KSG was compressed to a 10 mm thickness and restored to simulate laparoscopic port passage. The Bland-Altman evaluation assessed 4DP-KSG shape and marking accuracies before compression and after restoration with three operators. The kidney phantom's shape accuracy was 0.436 ± 0.333 mm, and the 4DP-KSG's shape accuracy was 0.818 ± 0.564 mm before compression and 0.389 ± 0.243 mm after restoration, with no significant differences. The 4DP-KSG marking accuracy was 0.952 ± 0.682 mm before compression and 0.793 ± 0.677 mm after restoration, with no statistical differences between operators (p = 0.899 and 0.992). In conclusion, our 4DP-KSG can be used for laparoscopic partial nephrectomies, providing precise and quantitative kidney tumor marking between operators before compression and after restoration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924080 | PMC |
http://dx.doi.org/10.1038/s41598-024-56075-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!