Fully inkjet-printed AgSe flexible thermoelectric devices for sustainable power generation.

Nat Commun

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China.

Published: March 2024

Flexible thermoelectric devices show great promise as sustainable power units for the exponentially increasing self-powered wearable electronics and ultra-widely distributed wireless sensor networks. While exciting proof-of-concept demonstrations have been reported, their large-scale implementation is impeded by unsatisfactory device performance and costly device fabrication techniques. Here, we develop AgSe-based thermoelectric films and flexible devices via inkjet printing. Large-area patterned arrays with microscale resolution are obtained in a dimensionally controlled manner by manipulating ink formulations and tuning printing parameters. Printed AgSe-based films exhibit (00 l)-textured feature, and an exceptional power factor (1097 μWmK at 377 K) is obtained by engineering the film composition and microstructure. Benefiting from high-resolution device integration, fully inkjet-printed AgSe-based flexible devices achieve a record-high normalized power (2 µWKcm) and superior flexibility. Diverse application scenarios are offered by inkjet-printed devices, such as continuous power generation by harvesting thermal energy from the environment or human bodies. Our strategy demonstrates the potential to revolutionize the design and manufacture of multi-scale and complex flexible thermoelectric devices while reducing costs, enabling them to be integrated into emerging electronic systems as sustainable power sources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10923913PMC
http://dx.doi.org/10.1038/s41467-024-46183-1DOI Listing

Publication Analysis

Top Keywords

flexible thermoelectric
12
thermoelectric devices
12
sustainable power
12
fully inkjet-printed
8
power generation
8
flexible devices
8
devices
6
power
6
flexible
5
inkjet-printed agse
4

Similar Publications

Recent Advances in Self-Powered Sensors Based on Ionic Hydrogels.

Research (Wash D C)

January 2025

School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China.

After years of research and development, flexible sensors are gradually evolving from the traditional "electronic" paradigm to the "ionic" dimension. Smart flexible sensors derived from the concept of ion transport are gradually emerging in the flexible electronics. In particular, ionic hydrogels have increasingly become the focus of research on flexible sensors as a result of their tunable conductivity, flexibility, biocompatibility, and self-healable capabilities.

View Article and Find Full Text PDF

Enabling ultra-flexible inorganic thin-film-based thermoelectric devices by introducing nanoscale titanium layers.

Nat Commun

January 2025

School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.

Here, we design exotic interfaces within a flexible thermoelectric device, incorporating a polyimide substrate, Ti contact layer, Cu electrode, Ti barrier layer, and thermoelectric thin film. The device features 162 pairs of thin-film legs with high room-temperature performance, using p-BiSbTe and n-BiTeSe, with figure-of-merit values of 1.39 and 1.

View Article and Find Full Text PDF

Recent Advances in the Tunable Optoelectromagnetic Properties of PEDOTs.

Molecules

January 2025

Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA.

Conducting polymers represent a crucial class of functional materials with widespread applications in diverse fields. Among these, poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have garnered significant attention due to their distinctive optical, electronic, and magnetic properties, as well as their exceptional tunability. These properties often exhibit intricate interdependencies, manifesting as synergistic, concomitant, or antagonistic relationships.

View Article and Find Full Text PDF

In this study, we investigate the thermoelectric properties of functionalized multi-walled carbon nanotubes (F-MWCNTs) dispersed over a flexible substrate through a facile vacuum filtration route. To improve their interfacial adhesion and dispersion, F-MWCNTs underwent hot-pressing. The heat-treatment has improved the nanotubes' connections and subsequently reduced porosity as well, which results in an increasing electrical conductivity upon increasing temperature of hot-pressing.

View Article and Find Full Text PDF

Flexible thermoelectric generators (FTEGs) can continuously harvest energy from the environment or the human body to supply wearable electronic devices, which should be a clean energy solution and provide an opportunity to satisfy the increasing power consumption of multimodal sensing and data transmission in wearable electronic devices. Here, the 64-pair FTEG was fabricated by introducing the plated through-hole and heterotypic electrode structures to optimize the thermal transport, showing the largely improved output power of 4.1 mW and record-high power density of 312 μW cm at a given ambient temperature of 15 °C inside a measurement equipment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!