The field of extracellular vesicle (EV) signalling has the potential to transform our understanding of maternal-fetal communication and affords new opportunities for non-invasive prenatal testing and therapeutic intervention. EVs have been implicated in implantation, placentation, maternal adaptation to pregnancy and complications of pregnancy, being detectable in maternal circulation as early as 6 weeks of pregnancy. EVs of differing biogenic origin, composition and bioactivity are released by cells to maintain homoeostasis. Induction of EV signalling is associated with aberrant cellular metabolism and manifests as changes in EV concentrations and/or composition. Characterizing such changes affords opportunity to develop more informative diagnostics and efficacious interventions. To develop accurate and reliable EV-based diagnostics requires: identification of disease-associated biomarkers in specific EV subpopulations; and rapid, reproducible and scalable sample processing. Conventional isolation methods face challenges due to co-isolation of particles with similar physicochemical properties. Methods targeting specific vesicle-surface epitopes and compatible with automated platforms show promise. Effective EV therapeutics require precise targeting, achieved through genetic engineering to release EVs expressing cell-targeting ligands and carrying therapeutic payloads. Unlike cell-based therapies, this approach offers advantages including: low immunogenicity; stability; and long-term storage. Although EV diagnostics and therapeutics in reproductive biology are nascent, available technologies can enhance our understanding of EV signalling between mother and fetus, its role in pregnancies and improve outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.placenta.2024.02.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!