Objectives: To develop a robust algorithm to accurately calculate 'daily complete dose counts' for inhaled medicines, used in percent adherence calculations, from electronically-captured nebulizer data within the CFHealthHub Learning Health System.

Methods: A multi-center, cross-sectional study involved participants and clinicians reviewing real-world inhaled medicine usage records and triangulating them with objective nebulizer data to establish a consensus on 'daily complete dose counts.' An algorithm, which used only objective nebulizer data, was then developed using a derivation dataset and evaluated using internal validation dataset. The agreement and accuracy between the algorithm-derived and consensus-derived 'daily complete dose counts' was examined, with the consensus-derived count as the reference standard.

Results: Twelve people with CF participated. The algorithm derived a 'daily complete dose count' by screening out 'invalid' doses (those <60s in duration or run in cleaning mode), combining all doses starting within 120s of each other, and then screening out all doses with duration < 480s which were interrupted by power supply failure. The kappa co-efficient was 0.85 (0.71-0.91) in the derivation and 0.86 (0.77-0.94) in the validation dataset.

Conclusions: The algorithm demonstrated strong agreement with the participant-clinician consensus, enhancing confidence in CFHealthHub data. Publishingdata processing methods can encourage trust in digital endpoints and serve as an exemplar for other projects.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14737167.2024.2328085DOI Listing

Publication Analysis

Top Keywords

'daily complete
16
complete dose
16
dose counts'
12
nebulizer data
12
cfhealthhub learning
8
learning health
8
objective nebulizer
8
development data
4
data processing
4
algorithm
4

Similar Publications

Background: Mild cognitive impairment (MCI) is a high-risk factor for dementia and dysphagia; therefore, early intervention is vital. The effectiveness of intermittent theta burst stimulation (iTBS) targeting the right dorsal lateral prefrontal cortex (rDLPFC) remains unclear.

Methods: Thirty-six participants with MCI were randomly allocated to receive real (n = 18) or sham (n = 18) iTBS.

View Article and Find Full Text PDF

Introduction: Cardiovascular disease (CVD) is the leading cause of mortality worldwide, though it may be prevented by increasing physical activity (PA). When behaviour change techniques (BCTs) are bundled together, they increase PA, though which individual BCTs increase PA (and the behavioural mechanism of action (MoA) responsible for said increase) have not been studied. The aim of this study is to conduct a randomised factorial experiment to determine which of four BCTs significantly engage the proposed MoA-self-efficacy for PA-in adults at risk for CVD.

View Article and Find Full Text PDF

A man in his 60s suffered from refractory, biopsy-proven subacute cutaneous lupus erythematosus that required chronic, moderate dose steroids to manage. His rash was accompanied by arthralgias and negative autoantibody testing. His subacute lupus erythematosus (SCLE) was responsive to tofacitinib, but thrombotic complications limited the use of this medication.

View Article and Find Full Text PDF

Complex wound closure scenarios necessitate the development of advanced wound dressings that can effectively address the challenges of filling irregularly shaped wounds and managing fatigue failures encountered in daily patient activities. To tackle these issues, we develop a multifunctional hydrogel from natural polysaccharides and polypeptides with injectability and self-healing properties for promoting full-time and multipurpose wound healing. Synthesized through dynamic Schiff base linkages between oxidized hyaluronic acid (OHA), ε-polylysine (ε-PL), and quaternized chitosan (QCS), the OHA/ε-PL/QCS hydrogel can gel rapidly within 50 s.

View Article and Find Full Text PDF

Identifying the appropriate measurement environment for laser speckle flowmetry of cerebral blood flow in rats.

Brain Res

January 2025

Department of Neurosurgery, Division of Functional and Integrative Medicine, Department of Neurosurgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.

Laser speckle flowmetry (LSF) is a noninvasive tool for cerebral blood flow (CBF) measurement via a cranial bone window. LSF is influenced by various factors including the extent of removal of bone and dura mater and tissue wetness in the bone window. In this study, we aimed to characterize the effect of these conditions on LSF signals and identify optimal measurement conditions for CBF LSF measurements in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!