A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanochemical evolution of coal microscopic groups: A new pathway for mechanical forces acting on coal spontaneous combustion. | LitMetric

Mechanochemical evolution of coal microscopic groups: A new pathway for mechanical forces acting on coal spontaneous combustion.

Sci Total Environ

State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China. Electronic address:

Published: May 2024

Coal spontaneous combustion (CSC) remains a significant threat to regional ecological environments. As coal mining operations extend deeper into the earth, the increasingly complex mechanical force conditions in deep-seated mines escalate the potential risk of CSC. Mechanical forces such as ground stress and mechanical cutting are traditionally believed to be linked to CSC through the following pathway: mechanical forces act → mechanical energy is input → mechanical crushing and pulverization occur → coal-oxygen contact area increases → CSC accelerates. Noteworthily, these forces do more than just physically break coal; they also trigger a mechanochemical effect (MCE) that alters coal's microscopic chemistry. However, an independent evaluation of its influence on CSC was lacking. This study characterized coal's microscopic chemical group responses to the MCE. It was found that the MCE led to the degradation of aliphatic side chains while enhancing the polycondensation of aromatic ring structures, indicating a synergistic effect. Additionally, an increase in oxygen-containing functional groups, such as alkyl/aryl ethers, suggested enhanced interactions of the coal microscopic groups with oxygen due to mechanical forces. Based on these findings, an MCE-modified coal macromolecular model was developed and molecular quantum mechanical calculations were conducted. The results indicated that the MCE boosted coal macromolecule reactivity, thus facilitating easier activation. These conclusions were validated through modern thermal analysis tests. Finally, this study proposed a new pathway of mechanical forces acting on CSC: mechanical forces act → mechanical energy is input → the MCE occurs → evolutions of the microscopic groups within coal are induced → Activity of coal molecules is enhanced → CSC accelerates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.171471DOI Listing

Publication Analysis

Top Keywords

mechanical forces
24
microscopic groups
12
mechanical
12
pathway mechanical
12
→ mechanical
12
coal
10
9
coal microscopic
8
forces acting
8
coal spontaneous
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!