A novel lanthanide metal-organic-gel (MOG)-derived material/nitrogen-doped graphdiyne (Tb-Ru-MOG/CeO/N-GDY) composite with a dual-source signal amplification strategy was prepared and used to construct a molecularly imprinted sensor based on bifunctional monomers for the detection of imidacloprid (IMI) using electrochemiluminescence (ECL). In a green reaction environment, terbium (III) (Tb) can undergo multiple coordination reactions with 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine (Hcptpy) and tris(4,4'-dicarboxylicacid-2,2'-bipyridyl) ruthenium (II) dichloride (Ru(dcbpy)), and combine with ceria nanoparticles (CeO NPs) to form Tb-Ru-MOG/CeO. Within the Tb-Ru-MOG/CeO framework, energy transfer from the double ligands can sensitize the central Tb, triggering a distinct antenna effect and energy-transfer, and its polyporous configuration offered a nanoconfined space for Ce/Ce to effectively catalyze coreactant radicals (SO), leading to in-situ endogenous activation ECL reactions. The conductive N-GDY accelerated electron movement and increased the loading on the electrode surface, enhancing the exogenous excitation of the ECL signals. Leveraging the synergistic effect of the bifunctional monomer, the synthesized molecularly imprinted polymers (MIPs) ECL sensor demonstrated a wide detection range from 10 nM to 10,000 nM for IMI, with a limit of detection (LOD) of 1.37 nM, showcasing an innovative concept for the dual-source strategy of signal amplification in integrated ECL composites to analyze food and environmental hazards.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.171531 | DOI Listing |
Nano Lett
January 2025
College of Life Science and Technology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430074, China.
The pursuit of cutting-edge diagnostic systems capable of detecting biomarkers with exceptional sensitivity and precision is crucial for the timely and accurate monitoring of inflammatory responses. In this study, we introduce a dual gold nanoparticle-enhanced metasurface plasmon resonance (Bi-MSPR) biosensor for the ultrasensitive detection of C-reactive protein (CRP). The Bi-MSPR sensor is constructed upon a nanocup array chip with gradient-free electron density, where an innovative metasurface structure is built using a PEI-immobilized dual-gold nanoparticle amplification system.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, PR China.
Low humidity detection down to the parts per million level is urgently demanded in various industrial applications. The hardly detected tiny electrical signal variations caused by a very small amount of water adsorption are one of the intrinsic reasons that restrain the detection limit of the humidity sensors. Herein, a carbon-based field-effect transistor (FET) humidity sensor utilizing adsorbed water as the dual function of a sensing gate and analyte was proposed.
View Article and Find Full Text PDFAnal Chem
January 2025
Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
Glycoproteins are of significant value to liquid biopsy of human diseases. Herein, we present a universal electrochemical platform for the amplified detection of glycoproteins, taking advantage of the glycan-matchmade multivalent decoration of enzyme labels for the enzymatic signal amplification. Briefly, the glycan-matchmade multivalent decoration involves two steps, i.
View Article and Find Full Text PDFAnal Methods
January 2025
College of Chemistry, Sichuan University, Chengdu 610064, China.
Platelet-derived growth factor-BB (PDGF-BB), an important protein biomarker, is closely associated with tumorigenesis. Therefore, it is important to develop a simple and sensitive method to detect PDGF-BB. Herein, we developed a dual recycling signal amplification strategy for colorimetric and sensitive detection of PDGF-BB using a PDGF-BB specific aptamer.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neuro-Oncology, Columbia University Irving Medical Center, 710 W. 168th Street, New York, NY, 10032, USA.
Glioblastoma (GBM) classification involves a combination of histological and molecular signatures including IDH1/2 mutation, TERT promoter mutation, and EGFR amplification. Non-canonical mutations such as BRAF, found in 1-2% of GBMs, activate the MEK-ERK signaling pathway. This mutation can be targeted by small molecule inhibitors, offering therapeutic potential for GBM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!