In coastal areas, the surface water has been simultaneously exposed to the algae blooms caused by eutrophication and the microplastics (MPs) pollution originating from active human activities. As a practical alternative to address these issues in drinking water plant, coagulation-ultrafiltration combined process is still confronted with the limited understanding about the comprehensive effects of MPs on algae-laden surface water (ASW) treatment. Considering the migration of MPs in nature environment and drinking water treatment process, this study first aims to systematically investigate the influence of MPs on algae cultivation, coagulation performance and membrane fouling development. The results of algae cultivation indicate that MPs stimulated the algae activity by 58 % and then constantly suppressed the secretion of protein-like, humic-like and polysaccharide-like metabolites. The variation of particle size distribution and zeta potential confirm that MPs acted as nuclei to facilitate the development of large coagulation flocs with an increasing average size from 82.6 μm to 107.6 μm, during which the negatively charged pollutants were neutralized and removed from ASW. According to the SEM images, MPs could destroy the structure of fouling layer on 50 kDa membranes during the filtration of ASW coagulation effluent. Its synergistic effect with the enhanced coagulation performance and the suppressed EOM secretion contributed to the alleviation of membrane fouling caused by overlapped large-sized foulants. However, the interaction between the enriched organic foulants by MPs and the deposited coagulants on 300 kDa membranes facilitated the development of cake layer, leading to the deterioration of membrane permeability. This study emphasizes the importance in concerning the existence of MPs during the treatment of ASW by coagulation-ultrafiltration combined process and their exact influence in water purification efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.171553DOI Listing

Publication Analysis

Top Keywords

surface water
12
coagulation-ultrafiltration combined
12
combined process
12
algae cultivation
12
coagulation performance
12
membrane fouling
12
mps
9
comprehensive effects
8
algae-laden surface
8
water treatment
8

Similar Publications

Boosting the catalytic efficiency of UGT51 for efficient production of rare ginsenoside Rh2.

Folia Microbiol (Praha)

January 2025

Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.

Ginsenoside Rh2(S) is well-known for its therapeutic potential against diverse conditions, including some cancers, inflammation, and diabetes. The enzymatic activity of uridine diphosphate glycosyltransferase 51 (UGT51) from Saccharomyces cerevisiae plays a pivotal role in the glycosylation process between UDP-glucose (donor) and protopanaxadiol (acceptor), to form ginsenoside Rh2. However, the catalytic efficiency of the UGT51 has remained a challenging task.

View Article and Find Full Text PDF

Ecosystems such as wetlands have karst groundwater as their primary source of preserving their services and functions. Karst systems are complex hydrogeological systems that are difficult to study because of their complicated functioning mechanism, which requires an interdisciplinary effort based on hydrodynamic assessment and characterization of the hydrogeology of the system. The study area is the Ramsar wetland Ciénaga de Tamasopo (Mexico), which is dependent on the discharge of karst groundwater that is affected by water extraction of extensive sugarcane agriculture and is also the main water source for the rural towns.

View Article and Find Full Text PDF

Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries.

View Article and Find Full Text PDF

In this study, an efficient membrane composed of polysulfone and graphene oxide was developed and evaluated for its efficacy in chromium adsorption. Characterization of the synthesized membrane involved comprehensive analyses including scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR) to assess its structural properties. Subsequently, the membrane's performance in removing chromium from aqueous solutions was scrutinized, considering key operational parameters.

View Article and Find Full Text PDF

This article reports facile fabrication of a multifunctional smart surface having superhydrophobic self-cleaning property, superoleophilicity, and antimicrobial property. These smart surfaces have been synthesized using the stereolithography (SLA) method of the additive manufacturing technique. SLA is a fast additive manufacturing technique used to create complex parts with intricate geometries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!