SRT1720 inhibits bladder cancer cell progression by impairing autophagic flux.

Biochem Pharmacol

Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China. Electronic address:

Published: April 2024

Bladder cancer (BC) is the most common cancer of the urinary tract, with poor survival, high recurrence rates, and lacking of targeted drugs. In this study, we constructed a library to screen compounds inhibiting bladder cancer cells growth. Among them, SRT1720 was identified to inhibit bladder cancer cell proliferation in vitro and in vivo. SRT1720 treatment also suppressed bladder cancer cells migration, invasion and induced apoptosis. Mechanism studies shown that SRT1720 promoted autophagosomes accumulation by inducing early-stage autophagy but disturbed the late-stage of autophagy by blocking fusion of autophagosomes and lysosomes. SRT1720 appears to induce autophagy related proteins expression and alter autophagy-related proteins acetylation to impede the autophagy flux. LAMP2, an important lysosomal associated membrane protein, may mediate SRT1720-inhibited autophagy flux as SRT1720 treatment significantly deacetylated LAMP2 which may influence its activity. Taken together, our results demonstrated that SRT1720 mediated apoptosis and autophagy flux inhibition may be a novel therapeutic strategy for bladder cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2024.116111DOI Listing

Publication Analysis

Top Keywords

bladder cancer
24
autophagy flux
12
cancer cell
8
cancer cells
8
srt1720 treatment
8
srt1720
7
cancer
7
bladder
6
autophagy
6
srt1720 inhibits
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!